Adaptation of the Banff Patellofemoral Instability Instrument (BPII) 2.0 into Swedish
DOI:
https://doi.org/10.2340/17453674.2023.21194Keywords:
Adolescent, Child, Patellar dislocation, Patellofemoral instability, Patient reported outcome measures, Translations, ValidationAbstract
Background and purpose: The Banff Patellofemoral Instability Instrument (BPII) 2.0 is a patient-reported outcome measure (PROM) designed specifically for patellofemoral instability. We translated and adapted the BPII 2.0 into Swedish and assessed its psychometric properties.
Patients and methods: The BPII 2.0 was forward- and back-translated. Children aged 10–16 years with patellar dislocation and instability or recurrent dislocation were recruited. Children completed the Swedish BPII 2.0 and KOOS-Child during their initial visit (t0) and 1 week later (t1). Internal consistency and test–retest reliability were evaluated using intraclass correlation coefficients (ICCs) for the BPII 2.0 and KOOS-Child scores comparison. Pearson correlation coefficients examined concurrent validity of the Swedish BPII 2.0 subscales with KOOS-Child subscales.
Results: 64 children (46 females), mean age 13.8 (10.0–16.3) years, participated. Time after patellar dislocation or surgery was 3–24 months. 55 patients (86%) returned the second BPII 2.0 and KOOS-Child after an average of 9 (5–22) days. There were no ceiling or floor effects for the total score of the new Swedish BPII 2.0 or for its subscales. BPII 2.0 demonstrated excellent internal consistency at t0 (ICC 0.96, 95% confidence interval [CI] 0.95–0.97) and at t1 (ICC 0.97, CI 0.95–0.98), as well as excellent test–retest reliability (ICC 0.97, CI 0.96–0.98). Concurrent validity of the BPII 2.0 subscales with KOOS-Child subscales was moderate to strong (rho 0.40–0.88).
Conclusion: The Swedish BPII 2.0 showed excellent internal consistency as well as excellent test–retest reliability and is a reliable and valid questionnaire.
Downloads
References
Sanders T L, Pareek A, Hewett T E, Stuart M J, Dahm D L, Krych A J. Incidence of first-time lateral patellar dislocation: a 21-year population-based study. Sports Health 2018; 10: 146-51. doi: 10.1177/1941738117725055 DOI: https://doi.org/10.1177/1941738117725055
Askenberger M, Ekstrom W, Finnbogason T, Janarv P M. Occult intra-articular knee injuries in children with hemarthrosis. Am J Sports Med 2014; 42: 1600-6. doi: 10.1177/0363546514529639 DOI: https://doi.org/10.1177/0363546514529639
Mostrom E B, Mikkelsen C, Weidenhielm L. Long-term follow-up of nonoperatively and operatively treated acute primary patellar dislocation in skeletally immature patients. ScientificWorldJournal 2014; 2014: 473281. doi: 10.1155/2014/473281 DOI: https://doi.org/10.1155/2014/473281
Nwachukwu B U, So C, Schairer W W, Green D W, Dodwell E R. Surgical versus conservative management of acute patellar dislocation in children and adolescents: a systematic review. Knee Surg Sports Traumatol Arthrosc 2016; 24(3): 760-7. doi: 10.1007/s00167-015-3948-2 DOI: https://doi.org/10.1007/s00167-015-3948-2
Sillanpaa P J, Maenpaa H M, Mattila V M, Visuri T, Pihlajamaki H. Arthroscopic surgery for primary traumatic patellar dislocation: a prospective, nonrandomized study comparing patients treated with and without acute arthroscopic stabilization with a median 7-year follow-up. Am J Sports Med 2008; 36: 2301-9. doi: 10.1177/0363546508322894 DOI: https://doi.org/10.1177/0363546508322894
Vollnberg B, Koehlitz T, Jung T, Scheffler S, Hoburg A, Khandker D, et al. Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol 2012; 22: 2347-56. doi: 10.1007/s00330-012-2493-3 DOI: https://doi.org/10.1007/s00330-012-2493-3
Sillanpaa P J, Mattila V M, Visuri T, Maenpaa H, Pihlajamaki H. Patellofemoral osteoarthritis in patients with operative treatment for patellar dislocation: a magnetic resonance-based analysis. Knee Surg Sports Traumatol Arthrosc 2011; 19: 230-5. doi: 10.1007/s00167-010-1285-z DOI: https://doi.org/10.1007/s00167-010-1285-z
Mostrom E B, Lammentausta E, Finnbogason T, Weidenhielm L, Janarv P M, Tiderius C J. T2 mapping and post-contrast T1 (dGEMRIC) of the patellar cartilage: 12-year follow-up after patellar stabilizing surgery in childhood. Acta Radiol Open 2017; 6: 2058460117738808. doi: 10.1177/2058460117738808 DOI: https://doi.org/10.1177/2058460117738808
Arendt E A, Askenberger M, Agel J, Tompkins M A. Risk of redislocation after primary patellar dislocation: a clinical prediction model based on magnetic resonance imaging variables. Am J Sports Med 2018; 46(14): 3385-90. doi: 10.1177/0363546518803936 DOI: https://doi.org/10.1177/0363546518803936
Palmu S, Kallio P E, Donell S T, Helenius I, Nietosvaara Y. Acute patellar dislocation in children and adolescents: a randomized clinical trial. J Bone Joint Surg Am 2008; 90: 463-70. 2018; 46(14): 3385-90. doi: 10.2106/jbjs.g.00072 DOI: https://doi.org/10.2106/JBJS.G.00072
Jaquith B P, Parikh S N. Predictors of recurrent patellar instability in children and adolescents after first-time dislocation. J Pediatr Orthop 2017; 37: 484-90. doi: 10.1097/bpo.0000000000000674 DOI: https://doi.org/10.1097/BPO.0000000000000674
Askenberger M, Bengtsson Mostrom E, Ekstrom W, Arendt E A, Hellsten A, Mikkelsen C, et al. Operative repair of medial patellofemoral ligament injury versus knee brace in children with an acute first-time traumatic patellar dislocation: a randomized controlled trial. Am J Sports Med 2018; 46(10): 2328-40. doi: 10.1177/0363546518770616 DOI: https://doi.org/10.1177/0363546518770616
Kluzek S, Dean B, Wartolowska K A. Patient-reported outcome measures (PROMs) as proof of treatment efficacy. BMJ Evid Based Med 2022; 27: 153-5. doi: 10.1136/bmjebm-2020-111573 DOI: https://doi.org/10.1136/bmjebm-2020-111573
Hiemstra L A, Kerslake S, Lafave M R, Heard S M, Buchko G M, Mohtadi N G. Initial validity and reliability of the Banff Patella Instability Instrument. Am J Sports Med 2013; 41: 1629-35. doi: 10.1177/0363546513487981 DOI: https://doi.org/10.1177/0363546513487981
Lafave M R, Hiemstra L, Kerslake S. Factor analysis and item reduction of the Banff Patella Instability Instrument (BPII): introduction of BPII 2.0. Am J Sports Med 2016; 44: 2081-6. doi: 10.1177/0363546516644605 DOI: https://doi.org/10.1177/0363546516644605
Smith T O, Donell S T, Clark A, Chester R, Cross J, Kader D F, et al. The development, validation and internal consistency of the Norwich Patellar Instability (NPI) score. Knee Surg Sports Traumatol Arthrosc 2014; 22: 324-35. doi: 10.1007/s00167-012-2359-x DOI: https://doi.org/10.1007/s00167-012-2359-x
Hiemstra L A, Page J L, Kerslake S. Patient-reported outcome measures for patellofemoral instability: a critical review. Curr Rev Musculoskelet Med 2019; 12(2): 124-37. doi: 10.1007/s12178-019-09537-7 DOI: https://doi.org/10.1007/s12178-019-09537-7
Lafave M R, Hiemstra L A, Kerslake S. Validity, reliability, and responsiveness of the Banff Patellar Instability Instrument (BPII) in a adolescent population. J Pediatr Orthop 2018; 38: e629-e633. doi: 10.1097/BPO.0000000000001250 DOI: https://doi.org/10.1097/BPO.0000000000001250
Becher C, Attal R, Balcarek P, Dirisamer F, Liebensteiner M, Pagenstert G, et al. Successful adaption of the Banff Patella Instability Instrument (BPII) 2.0 into German. Knee Surg Sports Traumatol Arthrosc 2018; 26: 2679-84. doi: 10.1007/s00167-017-4673-9 DOI: https://doi.org/10.1007/s00167-017-4673-9
Van Sambeeck J D, Van de Groes S A, Koeter S. Dutch translation and validation of the Norwich Patellar Instability score and Banff Patella Instability Instrument in patients after surgery for patellar instability. Acta Orthop Belg 2020; 86: 470-81. PMID: 33581032
Galvao P, Marques D S, Gracitelli G C, Ferreira M C, Kubota M S, Franciozi C. Portuguese translation and cross-cultural adaption of the Banff Patella Instability Instrument. Rev Bras Ortop (Sao Paulo) 2021; 56: 747-60. doi: 10.1055/s-0040-1721840 DOI: https://doi.org/10.1055/s-0040-1721840
Rhatomy S, Pontoh L A, Phatama K Y, Waskita H C, Al Mashur M I, Fiolin J, et al. The Banff Patellar Instability Instrument: validity and reliability of an Indonesian version. Eur J Orthop Surg Traumatol 2023; 33(3): 617-22. doi: 10.1007/s00590-022-03336-6 DOI: https://doi.org/10.1007/s00590-022-03336-6
Örtqvist M, Roos E M, Brostrom E W, Janarv P M, Iversen M D. Development of the Knee Injury and Osteoarthritis Outcome Score for children (KOOS-Child): comprehensibility and content validity. Acta Orthop 2012; 83: 666-73. doi: 10.3109/17453674.2012.747921 DOI: https://doi.org/10.3109/17453674.2012.747921
Örtqvist M, Iversen M D, Janarv P M, Brostrom E W, Roos E M. Psychometric properties of the Knee injury and Osteoarthritis Outcome Score for Children (KOOS-Child) in children with knee disorders. Br J Sports Med 2014; 48: 1437-46. doi: 10.1136/bjsports-2013-093164 DOI: https://doi.org/10.1136/bjsports-2013-093164
Gagnier J J, Lai J, Mokkink L B, Terwee C B. COSMIN reporting guideline for studies on measurement properties of patient-reported outcome measures. Qual Life Res 2021; 30: 2197-218. doi: 10.1007/s11136-021-02822-4 DOI: https://doi.org/10.1007/s11136-021-02822-4
Mokkink L B, Prinsen C A, Patrick D L, Alonso J, Bouter L M, de Vet H C, et al. COSMIN Study design checklist for patient-reported outcome measurement instrument. COSMIN, 2019. (Cited 2023 September 29). Available from: https://www.cosmin.nl/wp-content/uploads/COSMIN-study-designing-checklist_final.pdf
Park H, Castano J, Avila P, Perez D, Berinsky H, Gambarte L, et al. An information retrieval approach to ICD-10 classification. Stud Health Technol Inform 2019; 264: 1564-5. doi: 10.3233/SHTI190536
A user’s guide to: The Knee injury and Osteoarthritis Outcome Score for children KOOS-Child. (Cited 2023 February 7). Available from: http://www.koos.nu/kooschildusersguide.pdf
Terwee C B, Bot S D, de Boer M R, van der Windt D A, Knol D L, Dekker J, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol 2007; 60: 34-42. doi: 10.1016/j.jclinepi.2006.03.012 DOI: https://doi.org/10.1016/j.jclinepi.2006.03.012
Koo T K, Li M Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15: 155-63. doi: 10.1016/j.jcm.2016.02.012 DOI: https://doi.org/10.1016/j.jcm.2016.02.012
Bravo G, Potvin L. Estimating the reliability of continuous measures with Cronbach’s alpha or the intraclass correlation coefficient: toward the integration of two traditions. J Clin Epidemiol 1991; 44: 381-90. doi: 10.1016/0895-4356(91)90076-l DOI: https://doi.org/10.1016/0895-4356(91)90076-L
IBM Support. Confidence interval for Cronbach’s alpha in SPSS. (Cited 2023 May 5). Available from: https://www.ibm.com/support/pages/confidence-interval-cronbachs-alpha-spss
Tavakol M, Dennick R. Making sense of Cronbach’s alpha. Int J Med Educ 2011; 2: 53-5. doi: 10.5116/ijme.4dfb.8dfd DOI: https://doi.org/10.5116/ijme.4dfb.8dfd
Schober P, Boer C, Schwarte L A. Correlation coefficients: appropriate use and interpretation. Anesth Analg 2018; 126: 1763-8. doi: 10.1213/ANE.0000000000002864 DOI: https://doi.org/10.1213/ANE.0000000000002864
Additional Files
Published
How to Cite
License
Copyright (c) 2023 Johan von Heideken, Maura D Iversen, Anna Hellsten, Marie Askenberger
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.