Effects of extended oral antibiotic prophylaxis on surgical site infections after instrumented spinal fusion: a cohort study of 901 patients with a minimum follow-up of 1 year
DOI:
https://doi.org/10.2340/17453674.2023.9409Keywords:
extended antibiotic prophylaxis, Infection, oral prophylaxis, spinal surgery, Spine, surgical site infectionsAbstract
Background and purpose: We aimed to determine whether an extended oral antibiotic prophylaxis protocol may reduce the rate of surgical site infection (SSI) in patients undergoing instrumented spinal fusion.
Patients and methods: This retrospective cohort study comprise 901 consecutive patients subjected to spinal fusion between September 2011 and December 2018 with a minimum 1-year follow-up. 368 patients operated on between September 2011 and August 2014 were administered standard intravenous prophylaxis. 533 patients operated on between September 2014 and December 2018 were administered an extended protocol with 500 mg of oral cefuroxime axetil every 12 hours (clindamycin or levofloxacin in allergic individuals) until the removal of sutures. SSI was defined following the Centers for Disease Control and Prevention criteria. The association between risk factors and the incidence of SSI was evaluated by odds ratio (OR) with a multiple logistic regression model.
Results: The bivariate analysis showed a statistically significant association between SSI and the type of prophylaxis used (“extended”’ = 1.7% vs. “standard” = 6.2%, p= 0.001), with a lower proportion of superficial SSIs with the extended regimen (0.8% vs. 4.1%, p = 0.001). The multiple logistic regression model showed an OR = 0.25 (95% confidence interval [CI] 0.10–0.53) for extended prophylaxis and an OR = 3.5 (CI 1.3–8.1) for non-beta-lactams antibiotics.
Conclusion: Extended antibiotic prophylaxis seems to be associated with a reduction in the incidence of superficial SSI in instrumented spine surgery.
Downloads
References
Reisener M J, Pumberger M, Shue J, Girardi F P, Hughes A P. Trends in lumbar spinal fusion: a literature review. J Spine Surg 2020; 6(4): 752-61. doi: 10.21037/jss-20-492. DOI: https://doi.org/10.21037/jss-20-492
Sheikh S R, Thompson N R, Benzel E, Steinmetz M, Mroz T, Tomic D, et al. Can we justify it? Trends in the utilization of spinal fusions and associated reimbursement. Neurosurgery 2020; 86(2): E193-202. doi: 10.1093/neuros/nyz400. DOI: https://doi.org/10.1093/neuros/nyz400
Zhou J, Wang R, Huo X, Xiong W, Kang L, Xue Y. Incidence of surgical site infection after spine surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976) 2020; 45(3): 208-16. doi: 10.1097/BRS.0000000000003218. DOI: https://doi.org/10.1097/BRS.0000000000003218
Barker F G. Efficacy of prophylactic antibiotic therapy in spinal surgery: a meta-analysis. Neurosurgery 2002; 51(2): 391-400; discussion 400-1. DOI: https://doi.org/10.1097/00006123-200208000-00017
Bratzler D W, Dellinger E P, Olsen K M, Perl T M, Auwaerter P G, Bolon M K, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt) 2013; 14(1): 73-156. doi: 10.2146/ajhp120568. DOI: https://doi.org/10.1089/sur.2013.9999
Shaffer W O, Baisden J L, Fernand R, Matz P G, North American Spine Society. An evidence-based clinical guideline for antibiotic prophylaxis in spine surgery. Spine J 2013; 13(10): 1387-92. doi: 10.1016/j.spinee.2013.06.030. DOI: https://doi.org/10.1016/j.spinee.2013.06.030
O’Neill J. Tackling drug resistant infections globally: Final report and recommendations. The Review on Antimicrobial Resistance; 2016 [Internet]. [cited May 27, 2021]. Available from: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
Branch-Elliman W, O’Brien W, Strymish J, Itani K, Wyatt C, Gupta K. Association of duration and type of surgical prophylaxis with antimicrobial-associated adverse events. JAMA Surg 2019; 154(7): 590-8. doi: 10.1001/jamasurg.2019.0569. DOI: https://doi.org/10.1001/jamasurg.2019.0569
Horan T C, Andrus M, Dudeck M A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008; 36(5): 309-32. doi: 10.1016/j.ajic.2008.03.002. DOI: https://doi.org/10.1016/j.ajic.2008.03.002
Parvizi J, Tan T L, Goswami K, Higuera C, Della Valle C, Chen A F, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 2018; 33(5): 1309-1314.e2. doi: 10.1016/j.arth.2018.02.078. DOI: https://doi.org/10.1016/j.arth.2018.02.078
Bender R, Kuss O, Hildebrandt M, Gehrmann U. Estimating adjusted NNT measures in logistic regression analysis. Stat Med 2007; 26(30): 5586-95. doi: 10.1002/sim.3061. DOI: https://doi.org/10.1002/sim.3061
Visual Rx—Dr Chris Cates’ EBM Website [Internet]. [cited Oct 11, 2022]. Available from: http://www.nntonline.net/visualrx/
Textor J, van der Zander B, Gilthorpe M S, Liskiewicz M, Ellison G T. Robust causal inference using directed acyclic graphs: the R package “dagitty”. Int J Epidemiol 2016; 45(6): 1887-94. doi: 10.1093/ije/dyw341. DOI: https://doi.org/10.1093/ije/dyw341
Tennant P W G, Murray E J, Arnold K F, Berrie L, Fox M P, Gadd S C, et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations. Int J Epidemiol 2021; 50(2): 620-32. doi: 10.1093/ije/dyaa213. DOI: https://doi.org/10.1093/ije/dyaa213
Maciejczak A, Wolan-Nieroda A, Wałaszek M, Kołpa M, Wolak Z. Antibiotic prophylaxis in spine surgery: a comparison of single-dose and 72-hour protocols. J Hosp Infect 2019; 103(3): 303-10. doi: 10.1016/j.jhin.2019.04.017. DOI: https://doi.org/10.1016/j.jhin.2019.04.017
Marimuthu C, Abraham V T, Ravichandran M, Achimuthu R. Antimicrobial prophylaxis in instrumented spinal fusion surgery: a comparative analysis of 24-hour and 72-hour dosages. Asian Spine J 2016; 10(6): 1018-22. doi: 10.4184/asj.2016.10.6.1018. DOI: https://doi.org/10.4184/asj.2016.10.6.1018
Hellbusch L C, Helzer-Julin M, Doran S E, Leibrock L G, Long D J, Puccioni M J, et al. Single-dose vs multiple-dose antibiotic prophylaxis in instrumented lumbar fusion--a prospective study. Surg Neurol 2008; 70(6): 622-7; discussion 627. doi: 10.1016/j.surneu.2007.08.017. DOI: https://doi.org/10.1016/j.surneu.2007.08.017
Warren D K, Nickel K B, Han J H, Tolomeo P, Hostler C J, Foy K, et al. Postdischarge antibiotic use for prophylaxis following spinal fusion. Infect Control Hosp Epidemiol 2020; 41(7): 789-98. doi: 10.1017/ice.2020.117. DOI: https://doi.org/10.1017/ice.2020.117
Wyles C C, Hevesi M, Osmon D R, Park M A, Habermann E B, Lewallen D G, et al. John Charnley Award: Increased risk of prosthetic joint infection following primary total knee and hip arthroplasty with the use of alternative antibiotics to cefazolin: the value of allergy testing for antibiotic prophylaxis. Bone Joint J 2019; 101-B(6_Supple_B): 9-15. doi: 10.1302/0301-620X.101B6.BJJ-2018-1407.R1. DOI: https://doi.org/10.1302/0301-620X.101B6.BJJ-2018-1407.R1
Guía antimicrobiana HUN (adultos).pdf [Internet]. [cited Dec 21, 2022]. Available from: https://gcextsalud.navarra.es/Salud03/CHN/Estructura/JTACC/ComInfecc/Gua%20antimicrobiana%20tratamiento%20y%20profilaxis/Gu%C3%ADa%20antimicrobiana%20HUN%20(adultos).pdf
Pull ter Gunne A F, Hosman A J F, Cohen D B, Schuetz M, Habil D, van Laarhoven C J H M, et al. A methodological systematic review on surgical site infections following spinal surgery, Part 1: risk factors. Spine (Phila Pa 1976) 2012; 37(24): 2017-33. doi: 10.1097/BRS.0b013e31825bfca8. DOI: https://doi.org/10.1097/BRS.0b013e31825bfca8
Orenday-Barraza J M, Cavagnaro M J, Avila M J, Strouse I M, Farhadi D S, Dowell A, et al. Is the routine use of systemic antibiotics after spine surgery warranted? A systematic review and meta-analysis. Eur Spine J 2022; 31(10): 2481-92. doi: 10.1007/s00586-022-07294-9. DOI: https://doi.org/10.1007/s00586-022-07294-9
Pollmann C T, Dahl F A, Røtterud J H M, Gjertsen J E, Årøen A. Surgical site infection after hip fracture—mortality and risk factors: an observational cohort study of 1,709 patients. Acta Orthop 2020; 91(3): 347-52. doi: 10.1080/17453674.2020.1717841. DOI: https://doi.org/10.1080/17453674.2020.1717841
Agarwal N, Agarwal P, Querry A, Mazurkiewicz A, Tempel Z J, Friedlander R M, et al. Implementation of an infection prevention bundle and increased physician awareness improves surgical outcomes and reduces costs associated with spine surgery. J Neurosurg Spine 2018; 29(1): 108-14. doi: 10.3171/2017.11.SPINE17436. DOI: https://doi.org/10.3171/2017.11.SPINE17436
Bagga R S, Shetty A P, Sharma V, Vijayanand K S S, Kanna R M, Rajasekaran S. Does preventive care bundle have an impact on surgical site infections following spine surgery? An analysis of 9607 patients. Spine Deform 2020; 8(4): 677-84. doi: 10.1007/s43390-020-00099-0. DOI: https://doi.org/10.1007/s43390-020-00099-0
Nasser R, Kosty J A, Shah S, Wang J, Cheng J. Risk factors and prevention of surgical site infections following spinal procedures. Global Spine J 2018; 8(4 Suppl.): 44S-48S. doi: 10.1177/2192568218806275. DOI: https://doi.org/10.1177/2192568218806275
Additional Files
Published
How to Cite
License
Copyright (c) 2023 Miguel Menendez Garcia, Iñaki Otermin Maya, Julian Librero Lopez, Jorge Gutierrez Dubois, Diego Manrique Cuevas, Jose Ignacio Alaez Cruz, Leyre Azcona Salvatierra, Isabel Ayechu Diaz, Angel M Hidalgo Ovejero
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.