Lumbar degeneration and quality of life in patients with lumbar disc herniation: a case-control long-term follow-up study

Authors

  • Sebastian Pontén Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm https://orcid.org/0009-0000-4555-1859
  • Tobias Lagerbäck Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm
  • Sebastian Blomé Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm
  • Karin Jensen Department of Clinical Neuroscience, Division of Neuro, Karolinska Institutet, Stockholm
  • Mikael Skorpil Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm; Department of Neuroradiology, Karolinska University Hospital, Stockholm https://orcid.org/0000-0002-2759-4692
  • Paul Gerdhem Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden https://orcid.org/0000-0001-8061-7163

DOI:

https://doi.org/10.2340/17453674.2024.39944

Keywords:

Disc herniation, Paediatric orthopaedics, Radiological imaging, Spine

Abstract

Background and purpose: Adults treated surgically for lumbar disc herniation in adolescence have a higher degree of lumbar disc degeneration than controls. We aimed to establish whether the degree of lumbar degeneration differs at diagnosis or at follow-up between surgically and non-surgically treated individuals.
Methods: We identified individuals with a lumbar disc herniation in adolescence diagnosed with magnetic resonance imaging (MRI) and contacted them for follow-up MRI. Lumbar degeneration was assessed according to Pfirrmann, Modic, and total end plate score (TEP score). Patient-reported outcome measures at follow-up comprised the Oswestry Disability Index (ODI), EQ-5D-3-level version, 36-Item Short Form Health Survey (SF-36), and Visual Analogue Scale (VAS) for back and leg pain. Fisher’s exact test, Mann–Whitney U tests, Wilcoxon tests, and logistic regression were used for statistical analysis.
Results: MRIs were available at diagnosis and after a mean of 11.9 years in 17 surgically treated individuals and 14 non-surgically treated individuals. Lumbar degeneration was similar at diagnosis (P = 0.2) and at follow-up, with the exception of higher TEP scores in surgically treated individuals at levels L4–L5 and L5–S1 at follow-up (P ≤ 0.03), but this difference did not remain after adjustment for age and sex (P ≥ 0.8). There were no significant differences in patient-reported outcome measures between the groups at follow-up (all P ≥ 0.2).
Conclusion: Adolescents with a lumbar disc herniation have, irrespective of treatment, a similar degree of lumbar degeneration at the time of diagnosis, and similar lumbar degeneration and patient-reported outcomes at long-term follow-up.

Downloads

Download data is not yet available.

References

Lagerbäck T, Elkan P, Möller H, Grauers A, Diarbakerli E, Gerdhem P. An observational study on the outcome after surgery for lumbar disc herniation in adolescents compared with adults based on the Swedish Spine Register. Spine J 2015; 15: 1241-7. doi: 10.1016/j.spinee.2015.02.024. DOI: https://doi.org/10.1016/j.spinee.2015.02.024

Lagerbäck T, Fritzell P, Hägg O, Nordvall D, Lønne G, Solberg T K, et al. Effectiveness of surgery for sciatica with disc herniation is not substantially affected by differences in surgical incidences among three countries: results from the Danish, Swedish and Norwegian spine registries. Eur Spine J 2019; 28: 2562-71. doi: 10.1007/s00586-018-5768-9. DOI: https://doi.org/10.1007/s00586-018-5768-9

Lagerbäck T, Möller H, Gerdhem P. Lumbar disc herniation surgery in adolescents and young adults: a long-term outcome comparison. Bone Joint J 2019; 101-B: 1534-41. doi: 10.1302/0301-620X.101B12.BJJ-2019-0621.R1. DOI: https://doi.org/10.1302/0301-620X.101B12.BJJ-2019-0621.R1

Lagerbäck T, Kastrati G, Möller H, Jensen K, Skorpil M, Gerdhem P. MRI characteristics at a mean of thirteen years after lumbar disc herniation surgery in adolescents: a case-control study. JBJS Open Access 2021; 6. doi: 10.2106/JBJS.OA.21.00081. DOI: https://doi.org/10.2106/JBJS.OA.21.00081

Mysliwiec L W, Cholewicki J, Winkelpleck M D, Eis G P. MSU classification for herniated lumbar discs on MRI: toward developing objective criteria for surgical selection. Eur Spine J 2010; 19: 1087-93. doi: 10.1007/s00586-009-1274-4. DOI: https://doi.org/10.1007/s00586-009-1274-4

Pfirrmann C W, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001; 26: 1873-8. doi: 10.1097/00007632-200109010-00011. DOI: https://doi.org/10.1097/00007632-200109010-00011

Modic M T, Steinberg P M, Ross J S, Masaryk T J, Carter J R. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988; 166: 193-9. doi: 10.1148/radiology.166.1.3336678. DOI: https://doi.org/10.1148/radiology.166.1.3336678

Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty A P. Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 2008; 17: 626-43. doi: 10.1007/s00586-008-0645-6. DOI: https://doi.org/10.1007/s00586-008-0645-6

Fairbank J C, Pynsent P B. The Oswestry Disability Index. Spine (Phila Pa 1976) 2000; 25: 2940-52; discussion 2952. doi: 10.1097/00007632-200011150-00017. DOI: https://doi.org/10.1097/00007632-200011150-00017

Dolan P. Modeling valuations for EuroQol health states. Med Care 1997; 35: 1095-108. doi: 10.1097/00005650-199711000-00002. DOI: https://doi.org/10.1097/00005650-199711000-00002

Ware J E. SF-36 health survey update. Spine (Phila Pa 1976) 2000; 25: 3130-9. doi: 10.1097/00007632-200012150-00008. DOI: https://doi.org/10.1097/00007632-200012150-00008

Saltin B, Grimby G. Physiological analysis of middle-aged and old former athletes: comparison with still active athletes of the same ages. Circulation 1968; 38: 1104-15. doi: 10.1161/01.cir.38.6.1104. DOI: https://doi.org/10.1161/01.CIR.38.6.1104

Bernick S, Walker J M, Paule W J. Age changes to the anulus fibrosus in human intervertebral discs. Spine (Phila Pa 1976) 1991; 16: 520-4. doi: 10.1097/00007632-199105000-00006. DOI: https://doi.org/10.1097/00007632-199105000-00006

Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt K F, Nerlich A G. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976) 2002; 27: 2631-44. doi: 10.1097/00007632-200212010-00002. DOI: https://doi.org/10.1097/01.BRS.0000035304.27153.5B

Rade M, Määttä J H, Freidin M B, Airaksinen O, Karppinen J, Williams F M K. Vertebral endplate defect as initiating factor in intervertebral disc degeneration: strong association between endplate defect and disc degeneration in the general population. Spine (Phila Pa 1976) 2018; 43: 412-19. doi: 10.1097/BRS.0000000000002352. DOI: https://doi.org/10.1097/BRS.0000000000002352

Urrutia J, Zamora T, Prada C. The prevalence of degenerative or incidental findings in the lumbar spine of pediatric patients: a study using magnetic resonance imaging as a screening tool. Eur Spine J 2016; 25: 596-601. doi: 10.1007/s00586-015-4099-3. DOI: https://doi.org/10.1007/s00586-015-4099-3

Lund T, Schlenzka D, Lohman M, Ristolainen L, Kautiainen H, Klemetti E, et al. The intervertebral disc during growth: signal intensity changes on magnetic resonance imaging and their relevance to low back pain. PLoS One 2022; 17: e0275315. doi: 10.1371/journal.pone.0275315. DOI: https://doi.org/10.1371/journal.pone.0275315

Elfering A, Semmer N, Birkhofer D, Zanetti M, Hodler J, Boos N. Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine (Phila Pa 1976) 2002; 27: 125-34. doi: 10.1097/00007632-200201150-00002. DOI: https://doi.org/10.1097/00007632-200201150-00002

Farshad-Amacker N A, Hughes A P, Aichmair A, Herzog R J, Farshad M. Is an annular tear a predictor for accelerated disc degeneration? Eur Spine J 2014; 23: 1825-9. doi: 10.1007/s00586-014-3260-8. DOI: https://doi.org/10.1007/s00586-014-3260-8

Sääksjärvi S, Kerttula L, Luoma K, Paajanen H, Waris E. Disc degeneration of young low back pain patients: a prospective 30-year follow-up MRI study. Spine (Phila Pa 1976) 2020; 45: 1341-7. doi: 10.1097/BRS.0000000000003548. DOI: https://doi.org/10.1097/BRS.0000000000003548

Takatalo J, Karppinen J, Niinimäki J, Taimela S, Näyhä S, Mutanen P, et al. Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine ( Phila Pa 1976) 2011; 36: 2180-9. doi: 10.1097/BRS.0b013e3182077122. DOI: https://doi.org/10.1097/BRS.0b013e3182077122

Herlin C, Kjaer P, Espeland A, Skouen J S, Leboeuf-Yde C, Karppinen J, et al. Modic changes—their associations with low back pain and activity limitation: a systematic literature review and meta-analysis. PLoS One 2018; 13: e0200677. doi: 10.1371/journal.pone.0200677. DOI: https://doi.org/10.1371/journal.pone.0200677

Aavikko A, Lohman M, Ristolainen L, Kautiainen H, Osterman K, Schlenzka D, et al. ISSLS prize in clinical science 2022: accelerated disc degeneration after pubertal growth spurt differentiates adults with low back pain from their asymptomatic peers. Eur Spine J 2022; 31: 1080-7. doi: 10.1007/s00586-022-07184-0. DOI: https://doi.org/10.1007/s00586-022-07184-0

Duran S, Cavusoglu M, Hatipoglu H G, Sozmen Cılız D, Sakman B. Association between measures of vertebral endplate morphology and lumbar intervertebral disc degeneration. Can Assoc Radiol J 2017; 68: 210-16. doi: 10.1016/j.carj.2016.11.002. DOI: https://doi.org/10.1016/j.carj.2016.11.002

Farshad-Amacker N A, Hughes A, Herzog R J, Seifert B, Farshad M. The intervertebral disc, the endplates and the vertebral bone marrow as a unit in the process of degeneration. Eur Radiol 2017; 27: 2507-20. doi: 10.1007/s00330-016-4584-z. DOI: https://doi.org/10.1007/s00330-016-4584-z

Dang L, Liu Z. A review of current treatment for lumbar disc herniation in children and adolescents. Eur Spine J 2010; 19: 205-14. doi: 10.1007/s00586-009-1202-7. DOI: https://doi.org/10.1007/s00586-009-1202-7

Slotkin J R, Mislow J M, Day A L, Proctor M R. Pediatric disk disease. Neurosurg Clin N Am 2007; 18: 659-67. doi: 10.1016/j.nec.2007.08.001. DOI: https://doi.org/10.1016/j.nec.2007.08.001

Cahill K S, Dunn I, Gunnarsson T, Proctor M R. Lumbar microdiscectomy in pediatric patients: a large single-institution series. J Neurosurg Spine 2010; 12: 165-70. doi: 10.3171/2009.9.SPINE09756. DOI: https://doi.org/10.3171/2009.9.SPINE09756

Ozgen S, Konya D, Toktas O Z, Dagcinar A, Ozek M M. Lumbar disc herniation in adolescence. Pediatr Neurosurg 2007; 43: 77-81. doi: 10.1159/000098377. DOI: https://doi.org/10.1159/000098377

Weber H. Lumbar disc herniation: a controlled, prospective study with ten years of observation. Spine (Phila Pa 1976) 1983; 8: 131-40. PMID: 6857385. DOI: https://doi.org/10.1097/00007632-198303000-00003

Peul W C, van Houwelingen H C, van den Hout W B, Brand R, Eekhof J A, Tans J T, et al. Surgery versus prolonged conservative treatment for sciatica. N Engl J Med 2007; 356: 2245-56. doi: 10.1056/NEJMoa064039. DOI: https://doi.org/10.1056/NEJMoa064039

Published

2024-02-02

How to Cite

Pontén, S., Lagerbäck, T., Blomé, S., Jensen, K., Skorpil, M., & Gerdhem, P. (2024). Lumbar degeneration and quality of life in patients with lumbar disc herniation: a case-control long-term follow-up study. Acta Orthopaedica, 95, 92–98. https://doi.org/10.2340/17453674.2024.39944

Issue

Section

Articles

Categories