The risk of revision is higher following shoulder hemiarthroplasty compared with total shoulder arthroplasty for osteoarthritis: a matched cohort study of 11,556 patients from the National Joint Registry, UK
DOI:
https://doi.org/10.2340/17453674.2024.39916Keywords:
Arthroplasty, Osteoarthritis, Osteoarthrosis, ShoulderAbstract
Background and purpose: Total shoulder arthroplasty (TSA) and hemiarthroplasty (HA) are used in the management of osteoarthritis of the glenohumeral joint. We aimed to determine whether TSA or HA resulted in a lower risk of adverse outcomes in patients of all ages with osteoarthritis and an intact rotator cuff and in a subgroup of patients aged 60 years or younger.
Patients and methods: Shoulder arthroplasties recorded in the National Joint Registry, UK, between April 1, 2012 and June 30, 2021, were linked to Hospital Episode Statistics in England. Elective TSAs and HAs were matched on propensity scores based on 11 variables. The primary outcome was all-cause revision. Secondary outcomes were combined revision/non-revision reoperations, 30-day inpatient complications, 1-year mortality, and length of stay. 95% confidence intervals (CI) were reported.
Results: 11,556 shoulder arthroplasties were included: 7,641 TSAs, 3,915 HAs. At 8 years 95% (CI 94–96) of TSAs and 91% (CI 90–92) of HAs remained unrevised. The hazard ratio (HR) varied across follow-up: 4-year HR 2.7 (CI 1.9–3.5), 8-year HR 2.0 (CI 0.5–3.5). Rotator cuff insufficiency was the most common revision indication. In patients aged 60 years or younger prosthesis survival at 8 years was 92% (CI 89–94) following TSA and 84% (CI 80–87) following HA.
Conclusion: The risk of revision was higher following HA in patients with osteoarthritis and an intact rotator cuff. Patients aged 60 years and younger had a higher risk of revision following HA.
Downloads
References
Wagner E R, Farley K X, Higgins I, Wilson J M, Daly C A, Gottschalk M B. The incidence of shoulder arthroplasty: rise and future projections compared with hip and knee arthroplasty. J Shoulder Elbow Surg 2020; 29(12): 2601-9. doi: 10.1016/j.jse.2020.03.049. DOI: https://doi.org/10.1016/j.jse.2020.03.049
National Joint Registry for England, Wales and Northern Ireland. 19th annual report; 2022. Available from: https://www.njrcentre.org.uk/njr-annual-report-2022/ (accessed Oct 24, 2022).
Hochreiter B, Hasler A, Hasler J, Kriechling P, Borbas P, Gerber C. Factors influencing functional internal rotation after reverse total shoulder arthroplasty. JSES Int 2021; 5(4): 679-87. doi: 10.1016/j.jseint.2021.03.005. DOI: https://doi.org/10.1016/j.jseint.2021.03.005
National Institute for Health and Care Excellence (NICE). Joint replacement (primary): hip, knee and shoulder NICE guideline [NG157] 2020; (June). Available from: https://www.nice.org.uk/guidance/ng157 (accessed Oct 15, 2022).
Craig R S, Goodier H, Singh J A, Hopewell S, Rees J L. Shoulder replacement surgery for osteoarthritis and rotator cuff tear arthropathy. Cochrane Database Syst Rev 2020; 4: CD012879. doi: 10.1002/14651858.CD012879.pub2. DOI: https://doi.org/10.1002/14651858.CD012879.pub2
Lapner P L C, Rollins M D, Netting C, Tuna M, Bader Eddeen A, van Walraven C. A population-based comparison of joint survival of hemiarthroplasty versus total shoulder arthroplasty in osteoarthritis and rheumatoid arthritis. Bone Joint J 2019; 101-B(4): 454-60. doi: 10.1302/0301-620X.101B4.BJR-2018-0620.R1. DOI: https://doi.org/10.1302/0301-620X.101B4.BJR-2018-0620.R1
Rasmussen J V, Hole R, Metlie T, Brorson S, Äärimaa V, Demir Y, et al. Anatomical total shoulder arthroplasty used for glenohumeral osteoarthritis has higher survival rates than hemiarthroplasty: a Nordic registry-based study. Osteoarthritis Cartilage 2018; 26(5): 659-65. doi: 10.1016/j.joca.2018.02.896. DOI: https://doi.org/10.1016/j.joca.2018.02.896
Rangan A, Upadhaya S, Regan S, Toye F, Rees J L. Research priorities for shoulder surgery: results of the 2015 James Lind Alliance patient and clinician priority setting partnership. BMJ Open 2016; 6(4): 1-5. doi: 10.1136/bmjopen-2015-010412. DOI: https://doi.org/10.1136/bmjopen-2015-010412
von Elm E, Altman D G, Egger M, Pocock S J, Gøtzsche P C, Vanden-broucke J P; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007; 370(9596): 1453-7. doi: 10.1016/S0140-6736(07)61602-X. DOI: https://doi.org/10.1016/S0140-6736(07)61602-X
NHS Digital. Hospital Episode Statistics. Available from: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics (accessed Jul 26, 2022).
NHS Digital. Linked HES–ONS mortality data. Available from: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/linked-hes-ons-mortality-data (accessed Jan 5, 2022).
Craig R S, Lane J C E, Carr A J, Furniss D, Collins G S, Rees J L. Serious adverse events and lifetime risk of reoperation after elective shoulder replacement: population based cohort study using hospital episode statistics for England. BMJ (Online) 2019; 364: 1-10. doi: 10.1136/bmj.l298. DOI: https://doi.org/10.1136/bmj.l298
NHS Classifications ICD-10 and OPCS-4 eVersion. Available from: https://isd.digital.nhs.uk/trud/users/guest/filters/0/categories/37 (accessed Jan 5, 2022).
Charlson M E, Pompei P, Ales K L, MacKenzie C R. A new method of classifying prognostic in longitudinal studies: development. J Chronic Dis 1987; 40(5): 373-83. doi: 10.1016/0021-9681(87)90171-8. DOI: https://doi.org/10.1016/0021-9681(87)90171-8
Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J-C, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005; 43(11): 1130-9. doi: 10.1097/01.mlr.0000182534.19832.83. DOI: https://doi.org/10.1097/01.mlr.0000182534.19832.83
Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali W A. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol 2004; 57(12): 1288-94. doi: 10.1016/j.jclinepi.2004.03.012. DOI: https://doi.org/10.1016/j.jclinepi.2004.03.012
Brookhart M A, Schneeweiss S, Rothman K J, Glynn R J, Avorn J, Stürmer T. Variable selection for propensity score models. Am J Epidemiol 2006; 163(12): 1149-56. doi: 10.1093/aje/kwj149. DOI: https://doi.org/10.1093/aje/kwj149
Austin P C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res 2011; 46(3): 399-424. doi: 10.1080/00273171.2011.568786. DOI: https://doi.org/10.1080/00273171.2011.568786
Ali M S, Prieto-Alhambra D, Lopes L C, Ramos D, Bispo N, Ichihara M Y, et al. Propensity score methods in health technology assessment: principles, extended applications, and recent advances. Front Pharmacol 2019; 10(September): 1-19. doi: 10.3389/fphar.2019.00973. DOI: https://doi.org/10.3389/fphar.2019.00973
Royston P, Parmar M K B. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med 2002; 21(15): 2175-97. doi: 10.1002/sim.1203. DOI: https://doi.org/10.1002/sim.1203
Green K M, Stuart E A. Examining moderation analyses in propensity score methods: application to depression and substance use. J Consult Clin Psychol 2014; 82(5): 773-83. doi: 10.1037/a0036515. DOI: https://doi.org/10.1037/a0036515
Wang S V, Jin Y, Fireman B, Gruber S, He M, Wyss R et al. Relative performance of propensity score matching strategies for subgroup analyses. Am J Epidemiol 2018; 187(8): 1799-1807. doi: 10.1093/aje/kwy049. DOI: https://doi.org/10.1093/aje/kwy049
Crowther M J. Multilevel mixed-effects parametric survival analysis: estimation, simulation, and application. Stata J 2019; 19(4): 931-49. doi: 10.1177/1536867X19893639. DOI: https://doi.org/10.1177/1536867X19893639
Singh Jagdev B, McGrath J, Cole A, Gomaa A R, Chong H H, Singh H P. Total shoulder arthroplasty vs. hemiarthroplasty in patients with primary glenohumeral arthritis with intact rotator cuff: meta-analysis using the ratio of means. J Shoulder Elbow Surg 2022; 31(12): 2657-70. doi: 10.1016/j.jse.2022.07.012. DOI: https://doi.org/10.1016/j.jse.2022.07.012
Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, knee & shoulder arthroplasty: 2023 annual report; 2023. P. 1-480. Adelaide: AOA. Available from:https://aoanjrr.sahmri.com/annual-reports-2023 (accessed Jan 8, 2024).
University of York. Reverse or Anatomical replacement for Painful Shoulder Osteoarthritis, Differences between Interventions (RAPSODI): a multi-centre, pragmatic, parallel group, superiority randomised controlled trial. Available from: https://www.york.ac.uk/healthsciences/research/trials/ytutrialsandstudies/trials/rapsodi/ (accessed Nov 21, 2022).
Malhas A, Rashid A, Copas D, Bale S, Trail I. Glenoid bone loss in primary and revision shoulder arthroplasty. Shoulder Elbow 2016; 8(4): 229-40. doi: 10.1177/1758573216648601. DOI: https://doi.org/10.1177/1758573216648601
Ödquist M, Hallberg K, Rahme H, Salomonsson B, Rosso A. Lower age increases the risk of revision for stemmed and resurfacing shoulder hemi arthroplasty: a study from the Swedish shoulder arthroplasty register. Acta Orthop 2018; 89(1): 3-9. doi: 10.1080/17453674.2017.1411081. DOI: https://doi.org/10.1080/17453674.2017.1411081
Kerr M, Bedford M, Matthews B, O’Donoghue D. The economic impact of acute kidney injury in England. Nephrology Dialysis Transplantation 2014; 29(7): 1362-8. doi: 10.1093/ndt/gfu016. DOI: https://doi.org/10.1093/ndt/gfu016
Knapp B M, Botros M, Sing D C, Curry E J, Eichinger J K, Li X. Sex differences in complications and readmission rates following shoulder arthroplasty in the United States. JSES Int 2020; 4(1): 95-9. doi: 10.1016/j.jseint.2019.11.007. DOI: https://doi.org/10.1016/j.jseint.2019.11.007
Samuel M, Batomen B, Rouette J, Kim J, Platt R W, Brophy J M, et al. Evaluation of propensity score used in cardiovascular research: a cross-sectional survey and guidance document. BMJ Open 2020; 10(8): 1-9. doi: 10.1136/bmjopen-2020-036961. DOI: https://doi.org/10.1136/bmjopen-2020-036961
Sheth U, Lee J Y, Nam D, Henry P. Early outcomes of augmented glenoid components in anatomic total shoulder arthroplasty: a systematic review. Shoulder Elbow 2022; 14(3): 237-47. doi: 10.1177/17585732211032922. DOI: https://doi.org/10.1177/17585732211032922
Porter M. National Joint Registry Data Quality Audit. J Trauma Orthop 2017; 5(3): 42.
Additional Files
Published
How to Cite
License
Copyright (c) 2024 Andrew R Davies, Sanjeeve Sabharwal, Alexander D Liddle, Bernarda Zamora, Amar Rangan, Peter Reilly
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.