Activity-restriction only as treatment yields positive outcomes in pediatric spinal compression fractures: a prospective study of 47 patients at medium-term follow-up

Authors

  • Sofia Belov Department of Orthopaedics and Traumatology, HUS Helsinki University Hospital, University of Helsinki, Helsinki
  • Petra Grahn Department of Pediatric Surgery, Orthopedics and Traumatology, New Children’s Hospital, HUS Helsinki University Hospital, University of Helsinki, Helsinki https://orcid.org/0000-0003-3018-8270
  • Reetta Kivisaari Department of Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
  • Ilkka Helenius Department of Orthopaedics and Traumatology, HUS Helsinki University Hospital, University of Helsinki, Helsinki https://orcid.org/0000-0001-5200-3279
  • Matti Ahonen Department of Pediatric Surgery, Orthopedics and Traumatology, New Children’s Hospital, HUS Helsinki University Hospital, University of Helsinki, Helsinki https://orcid.org/0000-0002-0330-5032

DOI:

https://doi.org/10.2340/17453674.2024.35161

Keywords:

Fractures, Orthosis, Paediatric orthopaedics, Spinal Compression Fracture, Spine

Abstract

Background and purpose: We aimed to evaluate the clinical outcomes, radiographic results, and health-related quality of life in pediatric AO type A1 spinal compression fractures treated with activity-restriction only.
Patients and methods: All children between 2014 and 2020 with an AO type A1 spinal compression fracture treated with activity-restriction only identified from an institutional fracture registry were invited to a prospective outcomes study. Clinical findings and spinal radiographs were assessed at median 3 years, interquartile range (IQR) 1–4 follow-up from injury. Oswestry Disability Index, Pediatric Quality of Life Inventory Generic Core Scale (PedsQL), and PedsQL Pediatric Pain Questionnaire were compared with reference values. 63 children were identified, of whom 47 agreed to participate. 8 were polytrauma patients.
Results: Age at injury was median 11 (IQR 9–14) years. The number of injured vertebrae was median 2 (IQR 1–3). 82% (94 of 115) were thoracic vertebrae fractures and 70% (33 of 47) of the patients had thoracic vertebrae fractures only. At follow-up all but 2 fractures showed radiographic remodeling. There was no difference from the published reference values in the patient-reported outcome measures. A lower PedsQL physical functioning score was associated with higher patient-reported pain (P = 0.03). At follow-up 12 patients had hyperkyphosis (median difference from the reference values 4°, IQR 3–6, 95% confidence interval [CI] 3–6) and 5 hypolordosis (median difference from reference 8°, IQR 4–11, CI 4–14). None of the patients had surgery for deformity during follow-up.
Conclusion: Clinical, radiographic, and health-related quality of life outcomes were good after activity-restriction treatment in pediatric A1 spinal compression fractures.

Downloads

Download data is not yet available.

References

Akbarnia B A. Pediatric spine fractures. Orthop Clin North Am 1999; 30(3): 521-36, x. doi: 10.1016/s0030-5898(05)70103-6. DOI: https://doi.org/10.1016/S0030-5898(05)70103-6

Puisto V, Kääriäinen S, Impinen A, Parkkila T, Vartiainen E, Jalanko T, et al. Incidence of spinal and spinal cord injuries and their surgical treatment in children and adolescents: a population-based study. Spine (Phila Pa 1976) 2010; 35(1): 104-7. doi: 10.1097/BRS.0b013e3181c64423. DOI: https://doi.org/10.1097/BRS.0b013e3181c64423

Saul D, Dresing K. Epidemiology of vertebral fractures in pediatric and adolescent patients. Pediatr Rep 2018; 10(1): 7232. doi: 10.4081/pr.2018.7232. DOI: https://doi.org/10.4081/pr.2018.7232

Carreon L, Glassman S, Campbell M. Pediatric spine fractures: a review of 137 hospital admissions. J Spinal Disord Tech 2004; 17(6): 477-82. doi: 10.1097/01.bsd.0000132290.50455.99. DOI: https://doi.org/10.1097/01.bsd.0000132290.50455.99

Karlsson M, Moller A, Hasserius R, Besjakov J, Karlsson C, Ohlin. A modeling capacity of vertebral fractures exists during growth: an upto-47-year follow-up. Spine (Phila Pa 1976) 2003; 28(18): 2087-92. doi: 10.1097/01.BRS.0000084680.76654.B1. DOI: https://doi.org/10.1097/01.BRS.0000084680.76654.B1

Singer G, Parzer S, Castellani C, Wegmann H, Lindbichler F, Till H, et al. The influence of brace immobilization on the remodeling potential of thoracolumbar impaction fractures in children and adolescents. Eur Spine J 2016; 25(2): 607-13. doi: 10.1007/s00586-015-4250-1. DOI: https://doi.org/10.1007/s00586-015-4250-1

Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt K, Nerlich A. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976) 2002; 27(23): 2631-44. doi: 10.1097/00007632-200212010-00002. DOI: https://doi.org/10.1097/01.BRS.0000035304.27153.5B

Daniels A, Sobel A, Eberson C. Pediatric thoracolumbar spine trauma. J Am Acad Orthop Surg 2013; 21(12): 707-16. doi: 10.5435/JAAOS-21-12-707. DOI: https://doi.org/10.5435/00124635-201312000-00001

Bunnell W. An objective criterion for scoliosis screening. J Bone Joint Surg Am 1984; 66(9): 1381-7. DOI: https://doi.org/10.2106/00004623-198466090-00010

Macrae I F, Wright V. Measurement of back movement. Ann Rheum Dis 1969; 28: 584-9. DOI: https://doi.org/10.1136/ard.28.6.584

Pekkanen L, Kautianen H, Ylinen J, Salo P, Häkkinen A. Reliability and validity study of the Finnish version 2.0 of the Oswestry Disability Index. Spine (Phila Pa 1976) 2011 Feb 15; 36(4): 332-8. doi: 10.1097/BRS.0b013e3181cdd702. DOI: https://doi.org/10.1097/BRS.0b013e3181cdd702

Fairbank J C, Couper J, Davies J B, O’Brien J P. The Oswestry low back pain disability questionnaire. Physiotherapy 1980; 66: 271-3. DOI: https://doi.org/10.1037/t04205-000

Varni J, Thompson K, Hanson V. The Varni/Thompson pediatric pain questionnaire. I: Chronic musculoskeletal pain in juvenile rheumatoid arthritis. Pain 1987; 28(1): 27-38. doi: 10.1016/0304-3959(87)91056-6. DOI: https://doi.org/10.1016/0304-3959(87)91056-6

Varni J, Seid M, Kurtin P. PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med Care 2001; 39(8): 800-12. doi: 10.1097/00005650-200108000-00006. DOI: https://doi.org/10.1097/00005650-200108000-00006

Genant H, Wu C, van Kuijk C, Newitt M. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993; 8(9): 1137-48. doi: 10.1002/jbmr.5650080915. DOI: https://doi.org/10.1002/jbmr.5650080915

Cobb J R. Outline for the study of scoliosis. American Academy of Orthopedic Surgeons Instructional Course Lectures, Vol. 5. Ann Arbor, MI: Edwards; 1948.

Furlanetto T, Sedrez J, Candotti C, Loss J. Reference values for Cobb angles when evaluating the spine in the sagittal plane: a systematic review with meta-analysis. Motricidade 2018; 14(2-3): 115-28. DOI: https://doi.org/10.6063/motricidade.10890

Soultanis K, Thano A, Soucacos P. Outcome of thoracolumbar compression fractures following non-operative treatment. Injury 2021; 52(12): 3685-90. doi: 10.1016/j.injury.2021.05.019. DOI: https://doi.org/10.1016/j.injury.2021.05.019

Petitt J, Desai A, Kashkoush A, Ahorukomeye P, Potter T, Stout A, et al. Failure of conservatively managed traumatic vertebral compression fractures: a systematic review. World Neurosurg 2022; 165: 81-8. doi: 10.1016/j.wneu.2022.06.053. DOI: https://doi.org/10.1016/j.wneu.2022.06.053

Lonner B, Yoo A, Terran J, Sponseller P, Samdani A, Betz R, et al. Effect of spinal deformity on adolescent quality of life: comparison of operative Scheuermann kyphosis, adolescent idiopathic scoliosis, and normal controls. Spine (Phila Pa 1976) 2013; 38(12): 1049-55. doi: 10.1097/BRS.0b013e3182893c01. DOI: https://doi.org/10.1097/BRS.0b013e3182893c01

Petcharaporn M, Pawelek J, Bastrom T, Lonner B, Newton P. The relationship between thoracic hyperkyphosis and the Scoliosis Research Society outcomes instrument. Spine (Phila Pa 1976) 2007; 32(20): 2226-31. doi: 10.1097/BRS.0b013e31814b1bef. DOI: https://doi.org/10.1097/BRS.0b013e31814b1bef

Mäyränpää M, Helenius I, Valta H, Mäyränpää M, Toiviainen-Salo S, Mäkitie O. Bone densitometry in the diagnosis of vertebral fractures in children: accuracy of vertebral fracture assessment. Bone 2007; 41(3): 353-9. doi: 10.1016/j.bone.2007.05.012. DOI: https://doi.org/10.1016/j.bone.2007.05.012

Clifford S, Fritz J. Children and adolescents with low back pain: a descriptive study of physical examination and outcome measurement. J Orthop Sports Phys Ther 2003; 33(9): 513-22. doi: 10.2519/jospt.2003.33.9.513. DOI: https://doi.org/10.2519/jospt.2003.33.9.513

MacDonald J, dʼHemecourt P, Micheli L. The reliability and validity of a pediatric back outcome measure. Clin J Sport Med 2016; 26(6): 490-6. doi: 10.1097/JSM.0000000000000282. DOI: https://doi.org/10.1097/JSM.0000000000000282

Published

2024-01-18

How to Cite

Belov, S., Grahn, P., Kivisaari, R., Helenius, I., & Ahonen, M. (2024). Activity-restriction only as treatment yields positive outcomes in pediatric spinal compression fractures: a prospective study of 47 patients at medium-term follow-up. Acta Orthopaedica, 95, 8–13. https://doi.org/10.2340/17453674.2024.35161

Issue

Section

Articles

Categories