Influence of design features and brand of reverse shoulder arthroplasties on survivorship and reasons for revision surgery: results of 5,494 arthroplasties with up to 15 years’ follow-up reported to the Norwegian Arthroplasty Register 2007–2022

Authors

  • Randi M Hole The Norwegian Arthroplasty Register, Department of Orthopedic Surgery, Haukeland University Hospital, Bergen; Department of Clinical Medicine, University of Bergen, Bergen, Norway https://orcid.org/0000-0002-3732-1110
  • Anne Marie Fenstad The Norwegian Arthroplasty Register, Department of Orthopedic Surgery, Haukeland University Hospital, Bergen https://orcid.org/0000-0002-6429-0153
  • Jan-Erik Gjertsen The Norwegian Arthroplasty Register, Department of Orthopedic Surgery, Haukeland University Hospital, Bergen; Department of Clinical Medicine, University of Bergen, Bergen, Norway https://orcid.org/0000-0002-8490-268X
  • Geir Hallan The Norwegian Arthroplasty Register, Department of Orthopedic Surgery, Haukeland University Hospital, Bergen; Department of Clinical Medicine, University of Bergen, Bergen, Norway
  • Ove N Furnes The Norwegian Arthroplasty Register, Department of Orthopedic Surgery, Haukeland University Hospital, Bergen; Department of Clinical Medicine, University of Bergen, Bergen, Norway https://orcid.org/0000-0001-8223-2515

DOI:

https://doi.org/10.2340/17453674.2024.41344

Keywords:

Arthroplasty, Arthroplasty registry, Implant survival, Reverse shoulder arthroplasty, Shoulder

Abstract

Background and purpose: We aimed to report the survival of different reverse shoulder arthroplasty (RSA) designs and brands, and factors associated with revision. The secondary aim was to evaluate the reasons for revision.
Methods: We included 4,696 inlay and 798 onlay RSAs reported to the Norwegian Arthroplasty Register (NAR) 2007–2022. Kaplan–Meier estimates of survivorship and Cox models adjusted for age, sex, diagnosis, implant design, humeral fixation, and previous surgery were investigated to assess revision risks. The reasons for revision were compared using competing risk analysis.
Results: Overall, the 10-year survival rate was 94% (confidence interval [CI] 93–95). At 5 years all brands exceeded 90%. Compared with Delta Xtend (n = 3,865), Aequalis Ascend Flex (HR 2.8, CI 1.7–4.6), Aequalis Reversed II (HR 2.2, CI 1.2–4.2), SMR (HR 2.5, CI 1.3–4.7), and Promos (HR 2.2, CI 1.0–4.9) had increased risk of revision. Onlay and inlay RSAs had similar risk of revision (HR 1.2, CI 0.8–1.8). Instability and deep infection were the most frequent revision causes. Male sex (HR 2.3, CI 1.7–3.1), fracture sequelae (HR 3.1, CI 2.1–5.0), and fractures operated on with uncemented humeral stems had increased risk of revision (HR 3.5, CI 1.6–7.3).
Conclusion: We found similar risk of revision with inlay and onlay designs. Some prosthesis brands had a higher rate of revision than the most common implant, but numbers were low.

Downloads

Download data is not yet available.

References

Lübbeke A, Rees J L, Barea C, Combescure C, Carr A J, Silman A J. International variation in shoulder arthroplasty. Acta Orthop 2017; 88: 592-9. doi: 10.1080/17453674.2017.1368884.

Rupani N, Combescure C, Silman A, Lübbeke A, Rees J. International trends in shoulder replacement: a meta-analysis from 11 public joint registers. Acta Orthop 2024; 95: 348-57. doi: 10.2340/17453674.2024.40948.

Beltrame A, Di Benedetto P, Cicuto C, Cainero V, Chisoni R, Causero A. Onlay versus Inlay humeral steam in Reverse Shoulder Arthroplasty (RSA): clinical and biomechanical study. Acta Biomed 2019; 90: 54-63. doi: 10.23750/abm.v90i12-S.8983.

Zhou Y, Mandaleson A, Frampton C, Hirner M. Medium-term results of inlay vs. onlay humeral components for reverse shoulder arthroplasty: a New Zealand Joint Registry study. J Shoulder Elbow Surg 2024; 33(1): 99-107. doi: 10.1016/j.jse.2023.05.038.

Hole R M, Fenstad A M, Gjertsen J E, Hallan G, Furnes O N. The Delta III and Delta Xtend reverse shoulder arthroplasty. Risk of revision and failure mechanisms: a report on 3,650 cases from the Norwegian Arthroplasty Register 1994-2021. J Shoulder Elbow Surg 2024; 33(3): 666-77. doi: 10.1016/j.jse.2023.07.010.

Furnes O G, Hallan J E, Visnes G, Gundersen H, Kvinnesland T, Fenstad I, et al. The Norwegian Advisory Unit on Arthroplasty and Hip Fractures. Annual Report; 2022. ISBN: 978-82-91847-27-6. ISSN: 1893-8906.

Rasmussen J V, Brorson S, Hallan G, Dale H, Aarimaa V, Mokka J, et al. Is it feasible to merge data from national shoulder registries? A new collaboration within the Nordic Arthroplasty Register Association. J Shoulder Elbow Surg 2016; 25(12): e369-e377. doi: 10.1016/j.jse.2016.02.034.

Grambsch P M, Therneau T M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994; 81: 515-26. WOS:A1994PP36700006.

Fine J P, Gray R J. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999; 94: 496-509. doi: 10.2307/2670170.

Austin P C, Fine J P. Practical recommendations for reporting Fine–Gray model analyses for competing risk data. Stat Med 2017; 36: 4391-400. doi: 10.1002/sim.7501.

Lehtimaki K, Rasmussen J V, Mokka J, Salomonsson B, Hole R, Jensen S L, et al. Risk and risk factors for revision after primary reverse shoulder arthroplasty for cuff tear arthropathy and osteoarthritis: a Nordic Arthroplasty Register Association study. J Shoulder Elbow Surg 2018; 27(9): 1596-1601. doi: 10.1016/j.jse.2018.02.060.

Lu V, Jegatheesan V, Patel D, Domos P. Outcomes of acute vs. delayed reverse shoulder arthroplasty for proximal humerus fractures in the elderly: a systematic review and meta-analysis. J Shoulder Elbow Surg 2023; 32(8): 1728-39. doi: 10.1016/j.jse.2023.03.006.

Gill D R, Gill S D, Corfield S, Holder C, Page R S. Primary inlay reverse shoulder arthroplasty has a higher rate of revision than onlay reverse shoulder arthroplasty: Analysis from the Australian Orthopaedic Association National Joint Replacement Registry. Shoulder Elbow 2023; 15: 75-81. doi: 10.1177/17585732221122275.

Page R, Beazley J, Graves S, Rainbird S, Peng Y. Effect of glenosphere size on reverse shoulder arthroplasty revision rate: an analysis from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). J Shoulder Elbow Surg 2022; 31(6): e289-e301. doi: 10.1016/j.jse.2021.11.013.

Zumstein M A, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 2011; 20(1): 146-57. doi: 10.1016/j.jse.2010.08.001.

Florschütz A V, Lane P D, Crosby L A. Infection after primary anatomic versus primary reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2015; 24(8): 1296-301. doi: 10.1016/j.jse.2014.12.036.

Phadnis J, Huang T, Watts A, Krishnan J, Bain G I. Cemented or cementless humeral fixation in reverse total shoulder arthroplasty? A systematic review. Bone Joint J 2016; 98-B(1): 65-74. doi: 10.1302/0301-620X.98B1.36336.

Rossi L A, Tanoira I, Ranalletta M, Kunze K N, Farivar D, Perry A, et al. Cemented vs. uncemented reverse shoulder arthroplasty for proximal humeral fractures: a systematic review and meta-analysis. J Shoulder Elbow Surg 2022; 31(3): e101-e119. doi: 10.1016/j.jse.2021.10.011.

Kristensen T B, Dybvik E, Kristoffersen M, Dale H, Engesæter L B, Furnes O, et al. Cemented or uncemented hemiarthroplasty for femoral neck fracture? Data from the Norwegian Hip Fracture Register. Clin Orthop Relat Res 2020; 478(1): 90-100. doi: 10.1097/CORR.0000000000000826.

Fevang B T, Lie S A, Havelin L I, Skredderstuen A, Furnes O. Risk factors for revision after shoulder arthroplasty: 1,825 shoulder arthroplasties from the Norwegian Arthroplasty Register. Acta Orthop 2009; 80: 83-91. doi: 10.1080/17453670902805098.

Alberio R L, Landrino M, Fornara P, Grassi F A. Short-term outcomes of the Grammont reverse shoulder arthroplasty: comparison between first and second generation Delta prosthesis. Joints 2021; 7: 141-7. doi: 10.1055/s-0041-1731010.

Dolci A, Melis B, Verona M, Capone A, Marongiu G. Complications and intraoperative fractures in reverse shoulder arthroplasty: a systematic review. Geriatr Orthop Surg Rehabil 2021; 12: 21514593211059865. doi: 10.1177/21514593211059865.

Larose G, Fisher N D, Gambhir N, Alben M G, Zuckerman J D, Virk M S, et al. Inlay versus onlay humeral design for reverse shoulder arthroplasty: a systematic review and meta-analysis. J Shoulder Elbow Surg 2022; 31(11): 2410-20. doi: 10.1016/j.jse.2022.05.002.

Werthel J D, Walch G, Vegehan E, Deransart P, Sanchez-Sotelo J, Valenti P. Lateralization in reverse shoulder arthroplasty: a descriptive analysis of different implants in current practice. Int Orthop 2019; 43(10): 2349-60. doi: 10.1007/s00264-019-04365-3.

Espehaug B, Furnes O, Havelin L I, Engesaeter L B, Vollset S E, Kindseth O. Registration completeness in the Norwegian Arthroplasty Register. Acta Orthop 2006; 77: 49-56. doi: 10.1080/17453670610045696.

Valsamis E M, Collins G S, Pinedo-Villanueva R, Whitehouse M R, Rangan A, Sayers A, et al. Association between surgeon volume and patient outcomes after elective shoulder replacement surgery using data from the National Joint Registry and Hospital Episode Statistics for England: population based cohort study. BMJ 2023; 381: e075355. doi: 10.1136/bmj-2023-075355.

Published

2024-08-27

How to Cite

Hole, R. M., Fenstad, A. M., Gjertsen, J.-E., Hallan, G., & Furnes, O. N. (2024). Influence of design features and brand of reverse shoulder arthroplasties on survivorship and reasons for revision surgery: results of 5,494 arthroplasties with up to 15 years’ follow-up reported to the Norwegian Arthroplasty Register 2007–2022. Acta Orthopaedica, 95, 463–471. https://doi.org/10.2340/17453674.2024.41344