Activities of daily living in lower limb amputees with a bone-anchored prosthesis: a retrospective case series with 24 months’ follow-up
DOI:
https://doi.org/10.2340/17453674.2023.19670Keywords:
Activity of daily living, Amputees, Bone-anchored prosthesis, Functional outcomes, Implants, OsseointegrationAbstract
Background and purpose: Little is known about the activities of daily living (ADL) of patients with a bone-anchored prosthesis (BAP). We aimed to objectively measure ADL without and with BAP during standard care of follow-up. Our secondary aim was to measure mobility and walking ability.
Patients and methods: Patients aged 18–99 years who underwent surgery for transfemoral or transtibial BAP between September 11, 2017, and February 11, 2021, were eligible for inclusion in this retrospective case series of patients with socket prosthesis. ADL was measured with a continuous recording activity monitor (hours [h]) before surgery, and at 6, 12, and 24 months with BAP. Mobility and walking ability were assessed by the Timed Up and Go test (TUG) (seconds [s]) and 6 Minute Walk Test (6MWT) (meters [m]), respectively.
Results: 48 of the 57 eligible patients provided informed consent and were included. Their age was 59 (1st quartile to 3rd quartile 51–63) years. Total daily activity before BAP was 1.6 h (0.82–2.1) and increased to 2.1 h (1.4–2.5) at 6, 2.0 h (1.5–2.7) at 12, and 2.7 h (2.0–3.3) at 24 months with BAP. Daily walking increased from 1.3 h (0.79–1.9) before BAP to 1.8 h (1.6–2.3) at 6, to 1.7 h (1.2–2.4) at 12, and 2.0 h (1.6–2.6) at 24 months. Median TUG decreased from 12 s (9.1–14) before BAP to 8.9 s (7.7–10) at 24 months. Mean 6MWT increased from 272 m (SD 92) before BAP to 348 m (SD 68) at 24 months.
Conclusion: Objective measurements on ADL positively changed in patients with BAP. This effect was also seen in mobility and walking ability at 24 months.
Downloads
References
Moxey P W, Gogalniceanu P, Hinchliffe R J, Loftus I M, Jones K J, Thompson M M, et al. Lower extremity amputations: a review of global variability in incidence. Diabet Med 2011; 28(10): 1144-53. doi: 10.1111/j.1464-5491.2011.03279.x. DOI: https://doi.org/10.1111/j.1464-5491.2011.03279.x
Butler K, Bowen C, Hughes A M, Torah R, Ayala I, Tudor J, et al. A systematic review of the key factors affecting tissue viability and rehabilitation outcomes of the residual limb in lower extremity traumatic amputees. J Tissue Viability 2014; 23(3): 81-93. doi: 10.1016/j.jtv.2014.08.002. DOI: https://doi.org/10.1016/j.jtv.2014.08.002
Hagberg K, Branemark R. Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int 2001; 25(3): 186-94. doi: 10.1080/03093640108726601. DOI: https://doi.org/10.1080/03093640108726601
Hoellwarth J S, Tetsworth K, Kendrew J, Kang N V, van Waes O, Al-Maawi Q, et al. Periprosthetic osseointegration fractures are infrequent and management is familiar. Bone Joint J 2020; 102-B(2): 162-9. doi: 10.1302/0301-620X.102B2.BJJ-2019-0697.R2. DOI: https://doi.org/10.1302/0301-620X.102B2.BJJ-2019-0697.R2
Geary M, Gaston R G, Loeffler B. Surgical and technological advances in the management of upper limb amputees. Bone Joint J 2021; 103-B(3): 430-9. doi: 10.1302/0301-620X.103B3.BJJ-2020-1184.R1. DOI: https://doi.org/10.1302/0301-620X.103B3.BJJ-2020-1184.R1
Hagberg K, Ghassemi Jahani S A, Kulbacka-Ortiz K, Thomsen P, Malchau H, Reinholdt C. A 15-year follow-up of transfemoral amputees with bone-anchored transcutaneous prostheses. Bone Joint J 2020; 102-B(1): 55-63. doi: 10.1302/0301-620X.102B1.BJJ-2019-0611.R1. DOI: https://doi.org/10.1302/0301-620X.102B1.BJJ-2019-0611.R1
Al Muderis M M, Lu W Y, Li J J, Kaufman K, Orendurff M, Highsmith M J, et al. Clinically relevant outcome measures following limb osseointegration: systematic review of the literature. J Orthop Trauma 2018; 32(2): e64-e75. doi: 10.1097/BOT.0000000000001031. DOI: https://doi.org/10.1097/BOT.0000000000001031
Leijendekkers R A, van Hinte G, Frolke J P, van de Meent H, Nijhuisvan der Sanden M W, Staal J B. Comparison of bone-anchored prostheses and socket prostheses for patients with a lower extremity amputation: a systematic review. Disabil Rehabil 2017; 39(11): 1045-58. doi: 10.1080/09638288.2016.1186752. DOI: https://doi.org/10.1080/09638288.2016.1186752
Al Muderis M, Lu W, Tetsworth K, Bosley B, Li J J. Single-stage osseointegrated reconstruction and rehabilitation of lower limb amputees: the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2) for a prospective cohort study. BMJ Open 2017; 7(3): e013508. doi: 10.1136/bmjopen-2016-013508. DOI: https://doi.org/10.1136/bmjopen-2016-013508
von Elm E, Altman D G, Egger M, Pocock S J, Gotzsche P C, Vandenbroucke J P, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008; 61(4): 344-9. doi: 10.1016/j.jclinepi.2007.11.008. DOI: https://doi.org/10.1016/j.jclinepi.2007.11.008
Osterkamp L K. Current perspective on assessment of human body proportions of relevance to amputees. J Am Diet Assoc 1995; 95(2): 215-18. doi: 10.1016/S0002-8223(95)00050-x. DOI: https://doi.org/10.1016/S0002-8223(95)00050-X
Hagberg K, Branemark R, Hagg O. Questionnaire for Persons with a Transfemoral Amputation (Q-TFA): initial validity and reliability of a new outcome measure. J Rehabil Res Dev 2004; 41(5): 695-706. doi: 10.1682/JRRD.2003.11.0167. DOI: https://doi.org/10.1682/JRRD.2003.11.0167
Gailey R S, Roach K E, Applegate E B, Cho B, Cunniffe B, Licht S, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Arch Phys Med Rehabil 2002; 83(5): 613-27. doi: 10.1053/apmr.2002.32309. DOI: https://doi.org/10.1053/ampr.2002.32309
Bussmann J B, Martens W L, Tulen J H, Schasfoort F C, van den Berg-Emons H J, Stam H J. Measuring daily behavior using ambulatory accelerometry: the Activity Monitor. Behav Res Methods Instrum Comput 2001; 33(3): 349-56. doi: 10.3758/bf03195388. DOI: https://doi.org/10.3758/BF03195388
Horemans H, Kooijmans H, van den Berg-Emons R, Bussmann H. The Activ8 activity monitor: validation of posture and movement classification. J Rehabil Assist Technol Eng 2020; 7: 2055668319890535. doi: 10.1177/2055668319890535. DOI: https://doi.org/10.1177/2055668319890535
Butland R J, Pang J, Gross E R, Woodcock A A, Geddes D M. Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J (Clin Res Ed) 1982; 284(6329): 1607-8. doi: 10.1136/bmj.284.6329.1607. DOI: https://doi.org/10.1136/bmj.284.6329.1607
Frossard L A, Tranberg R, Haggstrom E, Pearcy M, Branemark R. Load on osseointegrated fixation of a transfemoral amputee during a fall: loading, descent, impact and recovery analysis. Prosthet Orthot Int 2010; 34(1): 85-97. doi: 10.3109/03093640903585024. DOI: https://doi.org/10.3109/03093640903585024
Frossard L, Hagberg K, Häggström E, Gow D L, Brånemark R, Pearcy M. Functional outcome of transfemoral amputees fitted with an osseointegrated fixation: temporal gait characteristics. J Prosthet Orthot 2010; 22(1): 11-20. doi: 10.1097/JPO.0b013e3181ccc53d. DOI: https://doi.org/10.1097/JPO.0b013e3181ccc53d
Frossard L A. Load on osseointegrated fixation of a transfemoral amputee during a fall: determination of the time and duration of descent. Prosthet Orthot Int 2010; 34(4): 472-87. doi: 10.3109/03093646.2010.520057. DOI: https://doi.org/10.3109/03093646.2010.520057
Dite W, Connor H J, Curtis H C. Clinical identification of multiple fall risk early after unilateral transtibial amputation. Arch Phys Med Rehabil 2007; 88(1): 109-14. doi: 10.1016/j.apmr.2006.10.015. DOI: https://doi.org/10.1016/j.apmr.2006.10.015
Schwarze M, Hurschler C, Seehaus F, Correa T, Welke B. Influence of transfemoral amputation length on resulting loads at the osseointegrated prosthesis fixation during walking and falling. Clin Biomech (Bristol, Avon) 2014; 29(3): 272-6. doi: 10.1016/j.clinbiomech.2013.11.023. DOI: https://doi.org/10.1016/j.clinbiomech.2013.11.023
Bohannon R W, Glenney S S. Minimal clinically important difference for change in comfortable gait speed of adults with pathology: a systematic review. J Eval Clin Pract 2014; 20(4): 295-300. doi: 10.1111/jep.12158. DOI: https://doi.org/10.1111/jep.12158
Kubo H, Nozoe M, Kanai M, Furuichi A, Onishi A, Kajimoto K, et al. Reference value of 6-minute walk distance in patients with sub-acute stroke. Top Stroke Rehabil 2020; 27(5): 337-43. doi: 10.1080/10749357.2019.1704372. DOI: https://doi.org/10.1080/10749357.2019.1704372
Mehrholz J, Wagner K, Rutte K, Meissner D, Pohl M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch Phys Med Rehabil 2007; 88(10): 1314-19. doi: 10.1016/j.apmr.2007.06.764. DOI: https://doi.org/10.1016/j.apmr.2007.06.764
Jaegers S M, Arendzen J H, de Jongh H J. Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med Rehabil 1995; 76(8): 736-43. doi: 10.1016/s0003-9993(95)80528-1. DOI: https://doi.org/10.1016/S0003-9993(95)80528-1
Additional Files
Published
How to Cite
License
Copyright (c) 2023 Michael-Kyrillos M Saleib, Esther M M van Lieshout, Dorien Verduin, Heleen P de Graaff, Maria A Paping, Michael H J Verhofstad, Oscar J F van Waes
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.