A low-dose biplanar X-ray imager has RSA level precision in total knee arthroplasty

Authors

DOI:

https://doi.org/10.2340/17453674.2023.19669

Keywords:

knee, low-dose radiography, radiostereometric analysis, radiosterometry

Abstract

Background and purpose: The low radiation biplanar X-ray imager (EOS imaging, Paris, France) scans patients in a weight-bearing position, provides calibrated images, and limits radiation, an asset for serial radiostereometric analysis (RSA) studies. RSA in vivo precision values have not been published for this type of imaging system, thus the goal of this study was to assess the precision of RSA in vivo utilizing a low radiation biplanar imager.
Patients and methods: At a mean of 5 years post-surgery (range 1.4–7.5 years), 15 total knee arthroplasty (TKA) participants (mean age 67 years at the time of imaging, 12 female, 3 male) with RSA markers implanted during index surgery were scanned twice at the same visit in the EOS imager. Precision of marker-based analysis was calculated by comparing the position of the implant relative to the underlying bone between the 2 examinations.
Results: The 95% limit of precision was 0.11, 0.04, and 0.15 mm along the x, y, and z axes, respectively and 0.15°, 0.20°, and 0.14° around the same axes.
Conclusion: This precision study has shown an in vivo RSA precision of ≤ 0.15 mm and ≤ 0.20°, well within published uniplanar values for conventional arthroplasty RSA, with the added benefit of weight-bearing imaging, a lower radiation dose, and without the need for a reference object during the scan.

Downloads

Download data is not yet available.

References

Selvik G. Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system. Acta Orthop Scand 1989; 60(Suppl 232): 1-51. Available: http://informahealthcare.com/doi/abs/10.3109/17453678909154184 DOI: https://doi.org/10.3109/17453678909154184

Mattsson P, Larsson S. Unstable trochanteric fractures augmented with calcium phosphate cement: a prospective randomized study using radio-stereometry to measure fracture stability. Scand J Surg 2004; 93: 223-8. DOI: https://doi.org/10.1177/145749690409300310

Kärrholm J, Gill R H S, Valstar E R. The history and future of radio-stereometric analysis. Clin Orthop Relat Res 2006; 448: 10-21. doi: 10.1097/01.blo.0000224001.95141.fe. DOI: https://doi.org/10.1097/01.blo.0000224001.95141.fe

Dunbar M J, Wilson D A J J, Hennigar A W, Amirault J D, Gross M, Reardon G P. Fixation of a trabecular metal knee arthroplasty component: a prospective randomized study. J Bone Joint Surg Am 2009; 91: 1578-86. doi: 10.2106/JBJS.H.00282. DOI: https://doi.org/10.2106/JBJS.H.00282

Pijls B G, Valstar E R, Nouta K-A, Plevier J W, Fiocco M, Middeldorp S, et al. Early migration of tibial components is associated with late revision: a systematic review and meta-analysis of 21,000 knee arthroplasties. Acta Orthop 2012; 83: 614-24. doi: 10.3109/17453674.2012.747052. DOI: https://doi.org/10.3109/17453674.2012.747052

Dunbar M J, Laende E K, Collopy D, Richardson C G. Stable migration of peri-apatite-coated uncemented tibial components in a multicentre study. Bone Joint J 2017; 99B: 1596-1602. doi: 10.1302/0301-620X.99B12.BJJ-2016-1118.R2. DOI: https://doi.org/10.1302/0301-620X.99B12.BJJ-2016-1118.R2

Bylander B, Aronson S, Egund N, Ingvar Hansson L, Selvik G. Growth disturbance after physeal injury of distal femur and proximal tibia studied by roentgen stereophotogrammetry. Arch Orthop Trauma Surg 1981; 98: 225-35. doi: 10.1007/BF00632981. DOI: https://doi.org/10.1007/BF00632981

Kärrholm J, Hansson L I, Selvik G. Roentgen stereophotogrammetric analysis of growth pattern after pronation ankle injuries in children. Acta Orthop Scand 1982; 53: 1001-11. PMID: 7180391. DOI: https://doi.org/10.3109/17453678208992861

Kärrholm J. Roentgen stereophotogrammetry: review of orthopedic applications. Acta Orthop Scand 1989; 60: 491-503. PMID: 2683567. DOI: https://doi.org/10.3109/17453678909149328

Gunderson R B, Horn J, Kibsgård T, Kristiansen L P, Pripp A H, Steen H. Negative correlation between extent of physeal ablation after percutaneous permanent physiodesis and postoperative growth: volume computer tomography and radiostereometric analysis of 37 physes in 27 patients. Acta Orthop 2013; 84: 426-30. doi: 10.3109/17453674.2013.810523. DOI: https://doi.org/10.3109/17453674.2013.810523

Holmdahl P, Backteman T, Danielsson A, Kärrholm J, Riad J. Continued growth after fixation of slipped capital femoral epiphysis. J Child Orthop 2016; 10: 643-50. doi: 10.1007/s11832-016-0793-x. DOI: https://doi.org/10.1007/s11832-016-0793-x

Sandberg O H, Kärrholm J, Olivecrona H, Röhrl SM, Sköldenberg O G, Brodén C. Computed tomography-based radiostereometric analysis in orthopedic research: practical guidelines. Acta Orthop 2023; 94: 373-8. doi: 10.2340/17453674.2023.15337. DOI: https://doi.org/10.2340/17453674.2023.15337

Deschênes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron M-C, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine (Phila Pa 1976) 2010; 35: 989-94. doi: 10.1097/BRS.0b013e3181bdcaa4. DOI: https://doi.org/10.1097/BRS.0b013e3181bdcaa4

Hurry J K, Rehan S, Spurway A J, Laende E K, Astephen Wilson J L, Logan K J, et al. The reliability of radiostereometric analysis in determining physeal motion in slipped capital femoral epiphysis in standard uniplanar and low-dose EOS biplanar radiography: a phantom model study. J Pediatr Orthop B 2018; 27: 496-502. doi: 10.1097/BPB.0000000000000516. DOI: https://doi.org/10.1097/BPB.0000000000000516

Laende E K, Astephen Wilson J L, Mills Flemming J, Valstar E R, Richardson C G, Dunbar M J. Equivalent 2-year stabilization of uncemented tibial component migration despite higher early migration compared with cemented fixation: an RSA study on 360 total knee arthroplasties. Acta Orthop 2019; 90: 1-11. doi: 10.1080/17453674.2018.1562633. DOI: https://doi.org/10.1080/17453674.2018.1562633

ISO/TC 150 Committee. ISO 16087 Implants for surgery — Roentgen stereophotogrammetric analysis for the assessment of migration of orthopaedic implants. Switzerland; 2013.

Allab A, Vazquez C, Cresson T, de Guise J. Calibration of stereo radiography system for radiostereometric analysis application. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2019; 4859-62. doi: 10.1109/EMBC.2019.8857531. DOI: https://doi.org/10.1109/EMBC.2019.8857531

Valstar E R, Gill R, Ryd L, Flivik G, Börlin N, Kärrholm J. Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 2005; 76: 563-72. doi: 10.1080/17453670510041574. DOI: https://doi.org/10.1080/17453670510041574

Challis J H. A procedure for determining rigid-body transformation parameters. J Biomech 1995; 28: 733-7. doi: 10.1016/0021-9290(94)00116-L. DOI: https://doi.org/10.1016/0021-9290(94)00116-L

Valstar E. The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants. ISPRS J Photogramm Remote Sens 2002; 56: 376-89. doi: 10.1016/S0924-2716(02)00064-3. DOI: https://doi.org/10.1016/S0924-2716(02)00064-3

Ryd L, Albrektsson B E B E, Carlsson L, Dansgard F, Herberts P, Lindstrand A, et al. Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg Br 1995; 77: 377-383. doi: 0301-620X/95/3974. DOI: https://doi.org/10.1302/0301-620X.77B3.7744919

EOS imaging Announces 350th System Worldwide Installed at University of Missouri Health Care. Press Release [Internet] 2019 [cited 6 Jan 2020]. Available from: https://www.eos-imaging.com/sites/default/files/press-release/PR_EOSI 350th Install_121119.pdf.

Published

2023-11-30

How to Cite

Hurry, J. K., Spurway, A. J., Laende, E. K., Rehan, S., Astephen Wilson, J. L., Dunbar, M. J., & El-Hawary, R. (2023). A low-dose biplanar X-ray imager has RSA level precision in total knee arthroplasty. Acta Orthopaedica, 94, 555–559. https://doi.org/10.2340/17453674.2023.19669

Issue

Section

Articles

Categories