Radiographic reference values of the central knee anatomy in 8–16-year-old children
DOI:
https://doi.org/10.2340/17453674.2023.15336Keywords:
central knee deformity, epiphysiodesis, Knee, Paediatric orthopaedics, reference valueAbstract
Background and purpose: For correction of leg-length discrepancy or angular deformity of the lower limb in skeletally immature patients temporary or permanent (hemi-)epiphysiodesis can be employed. These are reliable treatments with few complications. Recently, radiographic analysis of treatment-related alterations of the central knee anatomy gained interest among pediatric orthopedic surgeons. To date the comparison and adequate interpretation of potential changes of the central knee anatomy is limited due to the lack of defined standardized radiographic references. We aimed to establish new reference values of the central knee anatomy.
Patients and methods: A retrospective analysis of calibrated longstanding anteroposterior radiographs of 254 skeletally immature patients with a chronological age ranging from 8 to 16 years was conducted. The following radiographic parameters were assessed: (1) femoral floor angle, (2) tibial roof angle, (3) width at femoral physis, and (4) femoral notch–intercondylar distance.
Results: All observed radiographic parameters were normally distributed with a mean age of 12.4 years (standard deviation [SD] 2, 95% confidence interval [CI] 12.2–12.6). Mean femoral floor angle was 142° (SD 6, CI 141.8–142.9), mean tibial roof angle was 144° (SD 5, CI 143.7–144.1), mean width at femoral physis was 73 mm (SD 6, CI 72.8–73.9), and mean femoral notch–intercondylar distance was 8 mm (SD 1, CI 7.5–7.7). The estimated intraclass correlation coefficient values were excellent for all measurements.
Conclusion: This study provides new radiographic reference values of the central knee anatomy for children between 8 and 16 years and we suggest considering values within the range of 2 SD as the physiological range.
Downloads
References
Vogt B, Roedl R, Gosheger G, Frommer A, Laufer A, Kleine-Koenig M T, et al. Growth arrest: leg length correction through temporary epiphysiodesis with a novel rigid staple (RigidTack). Bone Joint J 2021; 103-b: 1428-37. doi: 10.1302/0301-620X.103B8.BJJ-2020-1035.R4. DOI: https://doi.org/10.1302/0301-620X.103B8.BJJ-2020-1035.R4
Canale S T, Christian C A. Techniques for epiphysiodesis about the knee. Clin Orthop Relat Res 1990; (255): 81-5. DOI: https://doi.org/10.1097/00003086-199006000-00012
Raab P, Wild A, Seller K, Krauspe R. Correction of length discrepancies and angular deformities of the leg by Blount’s epiphyseal stapling. Eur J Pediatr 2001; 160: 668-74. doi: 10.1007/s004310100834. DOI: https://doi.org/10.1007/s004310100834
Ghanem I, Karam J A, Widmann R F. Surgical epiphysiodesis indications and techniques: update. Curr Opin Pediatr 2011; 23: 53-9. doi: 10.1097/MOP.0b013e32834231b3. DOI: https://doi.org/10.1097/MOP.0b013e32834231b3
Stevens P M. Guided growth for angular correction: a preliminary series using a tension band plate. J Pediatr Orthop 2007; 27: 253-9. doi: 10.1097/BPO.0b013e31803433a1. DOI: https://doi.org/10.1097/BPO.0b013e31803433a1
Vogt B, Toporowski G, Gosheger G, Laufer A, Frommer A, Kleine-Koenig M T, et al. Guided growth: angular deformity correction through temporary hemiepiphysiodesis with a novel flexible staple (FlexTack). Bone Joint J 2023; 105-B: 331-40. doi: 10.1302/0301-620X.105B3.BJJ-2022-0857.R1. DOI: https://doi.org/10.1302/0301-620X.105B3.BJJ-2022-0857.R1
Phemister D B. Operative arrestment of longitudinal growth of bones in the treatment of deformities. J Bone Joint Surg Am 1933; 15.
Blount W P, Clarke G R. Control of bone growth by epiphyseal stapling: a preliminary report. J Bone Joint Surg Am 1949; 31(3): 464-78. DOI: https://doi.org/10.2106/00004623-194931030-00002
Metaizeau J P, Wong-Chung J, Bertrand H, Pasquier P. Percutaneous epiphysiodesis using transphyseal screws (PETS). J Pediatr Orthop 1998; 18: 363-9. DOI: https://doi.org/10.1097/01241398-199805000-00018
Vogt B, Frommer A, Gosheger G, Toporowski G, Tretow H, Rödl R, et al. [Growth modulation through hemiepiphysiodesis: novel surgical techniques: risks and progress]. Orthopade 2021; 50: 538-47. doi: 10.1007/s00132-021-04122-8. DOI: https://doi.org/10.1007/s00132-021-04122-8
Stevens P, Desperes M, McClure P K, Presson A, Herrick J. Growth deceleration for limb length discrepancy: tension band plates followed to maturity. Strategies Trauma Limb Reconstr 2022; 17: 26-31. doi: 10.5005/jp-journals-10080-1548. DOI: https://doi.org/10.5005/jp-journals-10080-1548
Braga S R, Santili C, Rodrigues N V M, Soni J F, Green D W. Growth modulation for angular knee deformities: a practical guideline. Curr Opin Pediatr 2023; 35(1): 110-17. doi: 10.1097/mop.0000000000001183. DOI: https://doi.org/10.1097/MOP.0000000000001183
Ballhause T M, Stiel N, Breyer S, Stücker R, Spiro A S. Does eight-plate epiphysiodesis of the proximal tibia in treating angular deformity create intra-articular deformity? Bone Joint J 2020; 102-b: 14128. doi: 10.1302/0301-620X.102B10.BJJ-2020-0473.R1. DOI: https://doi.org/10.1302/0301-620X.102B10.BJJ-2020-0473.R1
Sinha R, Weigl D, Mercado E, Becker T, Kedem P, Bar-On E. Eight-plate epiphysiodesis: are we creating an intra-articular deformity? Bone Joint J 2018; 100-b: 1112-16. doi: 10.1302/0301-620X.100B8.BJJ-2017-1206.R3. DOI: https://doi.org/10.1302/0301-620X.100B8.BJJ-2017-1206.R3
Tolk J J, Merchant R, Calder P R, Hashemi-Nejad A, Eastwood D M. Tension-band plating for leg-length discrepancy correction. Strategies Trauma Limb Reconstr 2022; 17: 19-25. doi: 10.5005/jp-journals-10080-1547. DOI: https://doi.org/10.5005/jp-journals-10080-1547
Moreland J R, Bassett L W, Hanker G J. Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am 1987; 69: 745-9. DOI: https://doi.org/10.2106/00004623-198769050-00016
Paley D. Principles of deformity correction. 1st ed. Berlin: Springer; 2002. doi: 10.1007/978-3-642-59373-4. DOI: https://doi.org/10.1007/978-3-642-59373-4_1
Frommer A, Niemann M, Gosheger G, Toporowski G, Laufer A, Eveslage M, et al. A new standard radiographic reference for proximal fibular height in children. Acta Orthop 2020; 91: 611-16. doi: 10.1080/17453674.2020.1769378. DOI: https://doi.org/10.1080/17453674.2020.1769378
Koenker R, Bassett G. Regression quantiles. Econometrica 1978; 46: 33-50. DOI: https://doi.org/10.2307/1913643
Koenker R, Hallock K F. Quantile regression. J Economic Perspectives 2001; 15: 143-56. DOI: https://doi.org/10.1257/jep.15.4.143
Centers for Disease Control and Prevention, National Center for Health Statistics: Growth Charts. Atlanta, GA: CDC; 2010.
Pendleton A M, Stevens P M, Hung M. Guided growth for the treatment of moderate leg-length discrepancy. Orthopedics 2013; 36: e575-e580. doi: 10.3928/01477447-20130426-18. DOI: https://doi.org/10.3928/01477447-20130426-18
Frommer A, Niemann M, Gosheger G, Eveslage M, Toporowski G, Laufer A. Temporary proximal tibial epiphysiodesis for correction of leg length discrepancy in children: should proximal fibular epiphysiodesis be performed concomitantly? J Clin Med 2021;10(6): 1245. doi: 10.3390/jcm10061245. DOI: https://doi.org/10.3390/jcm10061245
Laufer A, Toporowski G, Gosheger G, von der Heiden A, Rölfing J D, Frommer A, et al. Preliminary results of two novel devices for epiphysiodesis in the reduction of excessive predicted final height in tall stature. J Orthop Traumatol 2022; 23: 46. doi: 10.1186/s10195-022-00666-3. DOI: https://doi.org/10.1186/s10195-022-00666-3
Gorman T M, Vanderwerff R, Pond M, MacWilliams B, Santora S D. Mechanical axis following staple epiphysiodesis for limb-length inequality. J Bone Joint Surg Am 2009; 91: 2430-9. doi: 10.2106/JBJS.H.00896. DOI: https://doi.org/10.2106/JBJS.H.00896
Liu R W, Farrow L D, Messerschmitt P J, Gilmore A, Goodfellow D B, Cooperman D R. An anatomical study of the pediatric intercondylar notch. J Pediatr Orthop 2008; 28: 177-83. doi: 10.1097/BPO.0b013e318165219b. DOI: https://doi.org/10.1097/BPO.0b013e318165219b
Lima F M, Debieux P, Aihara A Y, Cardoso F N, Franciozi C E, Grimberg A, et al. The development of the intercondylar notch in the pediatric population. Knee 2020; 27: 747-54. doi: 10.1016/j.knee.2020.04.020. DOI: https://doi.org/10.1016/j.knee.2020.04.020
Bertocci G, Brown N P, Thompson A, Bertocci K, Adolphi N L, Dvorscak L, et al. Femur morphology in healthy infants and young children. Clin Anat 2022; 35: 305-15. doi: 10.1002/ca.23825. DOI: https://doi.org/10.1002/ca.23825
Knapik D M, Sanders J O, Gilmore A, Weber D R, Cooperman D R, Liu R W. A quantitative method for the radiological assessment of skeletal maturity using the distal femur. Bone Joint J 2018; 100-b: 1106-11. doi: 10.1302/0301-620X.100B8.BJJ-2017-1489.R1. DOI: https://doi.org/10.1302/0301-620X.100B8.BJJ-2017-1489.R1
Iriuchishima T, Goto B, Fu F H. The radiographic tibial spine area is correlated with the occurrence of ACL injury. Knee Surg Sports Traumatol Arthrosc 2022; 30: 78-83. doi: 10.1007/s00167-021-06523-w. DOI: https://doi.org/10.1007/s00167-021-06523-w
Iriuchishima T, Goto B, Fu F H. The occurrence of ACL injury influenced by the variance in width between the tibial spine and the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc 2020; 28: 3625-30. doi: 10.1007/s00167-020-05965-y. DOI: https://doi.org/10.1007/s00167-020-05965-y
Farrow L D, Chen M R, Cooperman D R, Victoroff B N, Goodfellow D B. Morphology of the femoral intercondylar notch. J Bone Joint Surg Am 2007; 89: 2150-5. doi: 10.2106/JBJS.F.01191. DOI: https://doi.org/10.2106/JBJS.F.01191
Vogt B, Schiedel F, Rödl R. [Guided growth in children and adolescents: correction of leg length discrepancies and leg axis deformities]. Orthopade 2014; 43: 267-84. doi: 10.1007/s00132-014-2270-x. DOI: https://doi.org/10.1007/s00132-014-2270-x
Additional Files
Published
How to Cite
License
Copyright (c) 2023 Bjoern Vogt, Emma Hvidberg, Jan Duedal Rölfing, Georg Gosheger, Bjarne Møller-Madsen, Ahmed A Abood, Veronika Weyer-Elberich, Andrea Laufer, Gregor Toporowski, Robert Roedl, Adrien Frommer
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.