Health-related quality of life after segmental pedicle screw instrumentation: a matched comparison of patients with neuromuscular and adolescent idiopathic scoliosis


  • Venla Soini Department of Paediatric Surgery and Paediatric Orthopaedic Surgery, University of Turku, and Turku University Hospital Turku; Department of Surgery, Vaasa Central Hospital, Wellbeing Services County of Ostrobothnia, Vaasa
  • Johanna Syvänen Department of Paediatric Surgery and Paediatric Orthopaedic Surgery, University of Turku, and Turku University Hospital Turku
  • Linda Helenius Department of Anaesthesiology and Intensive Care, Turku University Hospital and University of Turku, Turku
  • Arimatias Raitio Department of Paediatric Surgery and Paediatric Orthopaedic Surgery, University of Turku, and Turku University Hospital Turku
  • Ilkka Helenius Department of Paediatric Orthopaedic Surgery, Helsinki New Children’s Hospital, Helsinki; Department of Orthopaedics and Traumatology, University of Helsinki, and Helsinki University Hospital, Finland



Neuromuscular scoliosis, Paediatric orthopaedics, Spine


Background and purpose: Progressive neuromuscular scoliosis (NMS) often requires a long instrumented spinal fusion to improve health-related quality of life (HRQoL) and sitting balance. Segmental pedicle screw instrumentation improves HRQoL in patients with adolescent idiopathic scoliosis (AIS), but data on NMS is limited. We aimed to assess the impact of spinal fusion on HRQoL in NMS patients.
Patients and methods: We conducted a retrospective case-control study with prospective data collection of NMS patients undergoing posterior spinal fusion at a tertiary level hospital in 2009–2021. 2 controls with AIS matched for sex and age were selected for each NMS patient. The Scoliosis Research Society-24 (SRS-24) questionnaire was utilized for pre- and postoperative HRQoL assessment. Follow-up time was a minimum of 2 years.
Results: 60 NMS and 120 AIS patients were included in the analysis, and the mean age (SD) at operation was 14.6 (2.7) in NMS and 15.7 (2.5) in AIS groups. Total SRS score and all domains showed a significant improvement in NMS patients (p < 0.05). Total SRS score improved more (p < 0.001), while pain score improved less (p = 0.04) in NMS (change [95% CI], 0.31 [0.05–0.58] and 0.55 [0.27–0.81]) compared with AIS (0.01 [–0.10 to 0.12] and 0.88 [0.74–1.03]). Postoperative self-image was significantly better in NMS than in AIS at 2-year follow up (p = 0.01). Pelvic instrumentation reduced improvements in the SRS domains.
Conclusion: HRQoL in NMS patients improved significantly after spinal fusion, and these benefits are comparable to those of AIS patients.


Download data is not yet available.


Vialle R, Thevenin-Lemoine C, Mary P. Neuromuscular scoliosis. Orthop Traumatol Surg Res 2013; 99(1 Suppl.): S124-S139. doi: 10.1016/j.otsr.2012.11.002. DOI:

Hägglund G, Pettersson K, Czuba T, Persson-Bunke M, Rodby-Bousquet E. Incidence of scoliosis in cerebral palsy. Acta Orthop 2018; 89(4): 443-7. doi: 10.1080/17453674.2018.1450091. DOI:

Saito N, Ebara S, Ohotsuka K, Kumeta H, Takaoka K. Natural history of scoliosis in spastic cerebral palsy. Lancet 1998; 351(9117): 1687-92. doi: 10.1016/S0140-6736(98)01302-6. DOI:

Helenius I J, Viehweger E, Castelein R M. Cerebral palsy with dislocated hip and scoliosis: what to deal with first? J Child Orthop 2020; 14(1): 24-9. doi: 10.1302/1863-2548.14.190099. DOI:

Suresh K V, Ikwuezunma I, Margalit A, Sponseller P D. Spinal fusion with sacral alar iliac pelvic fixation in severe neuromuscular scoliosis. JBJS Essent Surg Tech 2021; 11(3):e20.00060 doi: 10.2106/JBJS.ST.20.00060. DOI:

Thometz J G, Simon S R. Progression of scoliosis after skeletal maturity in institutionalized adults who have cerebral palsy. J Bone Joint Surg Am 1988; 70(9): 1290-6. DOI:

Wishart B D, Kivlehan E. Neuromuscular scoliosis: when, who, why and outcomes. Phys Med Rehabil Clin N Am 2021; 32(3): 547-56. doi: 10.1016/j.pmr.2021.02.007. DOI:

Tondevold N, Lastikka M, Andersen T, Gehrchen M, Helenius I. Should instrumented spinal fusion in nonambulatory children with neuromuscular scoliosis be extended to L5 or the pelvis? Bone Joint J 2020; 102-B(2): 261-7. doi: 10.1302/0301-620X.102B2.BJJ-2019-0772.R2. DOI:

El-Hawary R, Chukwunyerenwa C. Update on evaluation and treatment of scoliosis. Pediatr Clin North Am 2014; 61(6): 1223-41. doi: 10.1016/j.pcl.2014.08.007. DOI:

El-Bromboly Y, Hurry J, Padhye K, Johnston C, McClung A, Samdani A, et al. The effect of proximal anchor choice during distraction-based surgeries for patients with nonidiopathic early-onset scoliosis: a retrospective multicenter study. J Pediatr Orthop 2021; 41(5): 290-5. doi: 10.1097/BPO.0000000000001784. DOI:

Miyanji F, Nasto L A, Sponseller P D, Shah S A, Samdani A F, Lonner B, et al. Assessing the risk–benefit ratio of scoliosis surgery in cerebral palsy: surgery is worth it. Bone Joint Surg Am 2018; 100(7): 556-63. doi: 10.2106/JBJS.17.00621. DOI:

Suk K S, Baek J H, Park J O, Kim H S, Lee H M, Kwon J W, et al. Postoperative quality of life in patients with progressive neuromuscular scoliosis and their parents. Spine J 2015; 15(3): 446-53. doi: 10.1016/j.spinee.2014.09.030. DOI:

Danielsson A J. What impact does spinal deformity correction for adolescent idiopathic scoliosis make on quality of life? Spine 2007; 32(19 Suppl.): S101-8. doi: 10.1097/BRS.0b013e318134ed0e. DOI:

Danielsson A J, Wiklund I, Pehrsson K, Nachemson A L. Health-related quality of life in patients with adolescent idiopathic scoliosis: a matched follow-up at least 20 years after treatment with brace or surgery. Eur Spine J 2001; 10(4): 278-88. doi: 10.1007/s005860100309. DOI:

Fan H, Wang Q, Huang Z, Sui W, Yang J, Deng Y, et al. Comparison of functional outcome and quality of life in patients with idiopathic scoliosis treated by spinal fusion. Medicine 2016; 95(19): e3289. doi: 10.1097/MD.0000000000003289. DOI:

Soini V, Raitio A, Helenius I, Helenius L, Syvanen J. A retrospective cohort study of bleeding characteristics and hidden blood loss after segmental pedicle screw instrumentation in neuromuscular scoliosis as compared with adolescent idiopathic scoliosis. N Am Spine Soc J 2022; 12: 100190. doi: 10.1016/j.xnsj.2022.100190. DOI:

Lenke L, Edwards C C, Bridwell K H. The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine. Spine 2003; 28: S199-S207. DOI:

Beauchamp E C, Lenke L G, Cerpa M, Newton P O, Kelly M P, Blanke K M, et al. Selecting the “touched vertebra” as the lowest instrumented vertebra in patients with Lenke type-1 and 2 curves: radiographic results after a minimum 5-year follow-up. J Bone Joint Surg Am 2020; 102(22): 1966-73. doi: 10.2106/JBJS.19.01485. DOI:

Ersberg A, Gerdhem P. Pre- and postoperative quality of life in patients treated for scoliosis. Acta Orthop 2013; 84(6): 537-43. doi: 10.3109/17453674.2013.854667. DOI:

Obid P, Bevot A, Goll A, Leichtle C, Wulker N, Niemeyer T. Quality of life after surgery for neuromuscular scoliosis. Orthop Rev 2013;5 (1):e1. doi: 10.4081/or.2013.e1. DOI:

Carreon L Y, Sanders J O, Diab M, Sucato D J, Sturm P F, Glassman S D, et al. The minimum clinically important difference in Scoliosis Research Society-22 Appearance, Activity, and Pain domains after surgical correction of adolescent idiopathic scoliosis. Spine 2010; 35(Issue): 2079-83. doi: 10.1097/BRS.0b013e3181c61fd7. DOI:

Additional Files



How to Cite

Soini, V., Syvänen, J., Helenius, L., Raitio, A., & Helenius, I. (2023). Health-related quality of life after segmental pedicle screw instrumentation: a matched comparison of patients with neuromuscular and adolescent idiopathic scoliosis. Acta Orthopaedica, 94, 165–170.