Long-term effects of retrograde approach on the knee after motorized femoral limb lengthening

Authors

  • Andreas H Krieg Pediatric Orthopedic Department, University Children’s Hospital Basel (UKBB), Basel
  • Chao Dong Pediatric Orthopedic Department, University Children’s Hospital Basel (UKBB), Basel https://orcid.org/0000-0003-0162-0474
  • Marc P Schmid University of Basel, Basel
  • Bernhard M Speth Pediatric Orthopedic Department, University Children’s Hospital Basel (UKBB), Basel
  • Dorothee Harder Department of Radiology, University Hospital Basel (USB), Basel, Switzerland
  • Ricardo Donners Department of Radiology, University Hospital Basel (USB), Basel, Switzerland https://orcid.org/0000-0002-1614-0521

DOI:

https://doi.org/10.2340/17453674.2023.10323

Keywords:

Articular cartilage, Knee, Limb lengthening, Paediatric orthopaedics, Retrograde approach

Abstract

Background and purpose: The retrograde femoral approach is an established technique for implantation of nails for leg lengthening and correction and in cases of distal femoral fractures. The purpose of this study was to determine the 10-year outcome of this technique by analyzing the clinical long-term effects and radiological status of the knee after leg lengthening via a retrograde femoral approach.
Patients and methods: This retrospective single-center study included 13 patients (median age at surgery 17 [range 15–20] years) who underwent unilateral, retrograde, femoral lengthening with a motorized nail. Outcome measurements were graded variables of the SF-36, ISKD score, and Lysholm score. MRI of both knees was performed in all patients. MRI was evaluated for the presence of degenerative changes and compared with the healthy contralateral knee. Cartilage condition was graded according to the International Cartilage Repair Society (ICRS) scoring system.
Results: All patients were pain-free and had a full range of motion 10 (range 10.0–12.2) years after surgery. All postoperative knees showed fibrosis of Hoffa’s fat pad and moderate to severe cartilage defects (ICRS Grade 2–4) of the trochlear groove (nail entry site). 6 out of 13 operated knees exhibited retropatellar cartilage defects.
Conclusion: Our study showed that patients were pain-free, but cartilage defects at the entry point and arthrofibrosis at Hoffa’s fat pad were observed without causing clinical impairment.

Downloads

Download data is not yet available.

References

Dahl M T, Gulli B, Berg T. Complications of limb lengthening: a learning curve. Clin Orthop Relat Res 1994; (301): 10-18. doi: 10.1097/00003086-199404000-00003. DOI: https://doi.org/10.1097/00003086-199404000-00003

Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res 1990; 250: 81-104. doi: 10.5005/jp/books/12869_156. DOI: https://doi.org/10.1097/00003086-199001000-00011

Lenze U, Krieg A H. Intramedullary lengthening nails: can we also correct deformities? J Child Orthop 2016; 10(6): 511-16. doi: 10.1007/s11832-016-0782-0. DOI: https://doi.org/10.1007/s11832-016-0782-0

Krieg A H, Speth B M, Foster B K. Leg lengthening with a motorized nail in adolescents. Clin Orthop Relat Res 2008: 466(1): 189-97. doi: 10.1007/s11999-007-0040-3. DOI: https://doi.org/10.1007/s11999-007-0040-3

Calder P R, McKay J E, Timms A J, Roskrow T, Fugazzotto S, Edel P, et al. Femoral lengthening using the Precice intramedullary limb-lengthening system: outcome comparison following antegrade and retrograde nails. Bone Joint J 2019; 101(9): 1168-76. doi: 10.1302/0301-620x.101b9.bjj-2018-1271.r1. DOI: https://doi.org/10.1302/0301-620X.101B9.BJJ-2018-1271.R1

Fragomen A T, Rozbruch S R. Lengthening of the femur with a remote-controlled magnetic intramedullary nail: retrograde technique. JBJS Essent Surg Tech 2016; 6(2): e20. doi: 10.2106/jbjs.st.15.00069. DOI: https://doi.org/10.2106/JBJS.ST.15.00069

Herscovici Jr D, Whiteman K. Retrograde nailing of the femur using an intercondylar approach. Clin Orthop Relat Res 1996; (332): 98. doi: 10.1097/00003086-199611000-00013. DOI: https://doi.org/10.1097/00003086-199611000-00013

Ostrum R F, DiCicco J, Lakatos R, Poka A. Retrograde intramedullary nailing of femoral diaphyseal fractures. J Orthop Trauma 1998; 12(7): 464-8. doi: 10.1097/00005131-199809000-00006. DOI: https://doi.org/10.1097/00005131-199809000-00006

Accadbled F, Pailhé R, Cavaignac E, Sales de Gauzy J. Bone lengthening using the Fitbone® motorized intramedullary nail: the first experience in France. Orthop Traumatol Surg Res 2016; 102(2): 217-22. doi: 10.1016/j.otsr.2015.10.011. DOI: https://doi.org/10.1016/j.otsr.2015.10.011

Oezcan Ç, Sökücü S, Beng K, Çetinkaya E, Demir B, Kabukçuoğlu Y S. Prospective comparative study of two methods for fixation after distal femur corrective osteotomy for valgus deformity; retrograde intramedullary nailing versus less invasive stabilization system plating. Int Orthop 2016; 40(10): 2121-6. doi: 10.1007/s00264-016-3190-7. DOI: https://doi.org/10.1007/s00264-016-3190-7

Hierholzer C, von Rüden C, Pötzel T, Woltmann A, Bühren V. Outcome analysis of retrograde nailing and less invasive stabilization system in distal femoral fractures: a retrospective analysis. Indian J Orthop 2011; 45(3): 243-50. doi: 10.4103/0019-5413.80043. DOI: https://doi.org/10.4103/0019-5413.80043

Kim J-W, Oh C-W, Oh J-K, Park K-H, Kim H-J, Kim T-S, et al. Treatment of infra-isthmal femoral fracture with an intramedullary nail: is retrograde nailing a better option than antegrade nailing? Arch Orthop Trauma Surg 2018; 138(9): 1241-7. doi: 10.1007/s00402-018-2961-6. DOI: https://doi.org/10.1007/s00402-018-2961-6

Baumgart R. The reverse planning method for lengthening of the lower limb using a straight intramedullary nail with or without deformity correction. Oper Orthop Traumatol 2009; 21(2): 221-33. doi: 10.1007/s00064-009-1709-4. DOI: https://doi.org/10.1007/s00064-009-1709-4

Ware J, Bierman A, Gandek B, Sinclair S, Lawrence W. Comparison of SF-36 summary and preference-based utility scores across groups differing in disease severity: results from the Medicare health outcomes survey. Value in Health 2003; 6(3): 304. doi: 10.1016/s1098-3015(10)64112-5. DOI: https://doi.org/10.1016/S1098-3015(10)64112-5

Higgins L D, Taylor M K, Park D, Ghodadra N, Marchant M, Pietrobon R, et al. Reliability and validity of the International Knee Documentation Committee (IKDC) subjective knee form. Joint Bone Spine 2007; 74(6): 594-9. doi: 10.1016/j.jbspin.2007.01.036. DOI: https://doi.org/10.1016/j.jbspin.2007.01.036

Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 1982; 10(3): 150-4. doi: 10.1177/036354658201000306. DOI: https://doi.org/10.1177/036354658201000306

Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 1985; (198): 43-9. doi: 10.1097/00003086-198509000-00007. DOI: https://doi.org/10.1097/00003086-198509000-00007

Dipaola J D, Nelson D W, Colville M R. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy 1991; 7(1): 101-4. doi: 10.1016/0749-8063(91)90087-e. DOI: https://doi.org/10.1016/0749-8063(91)90087-E

Anderson A F, Irrgang J J, Kocher M S, Mann B J, Harrast J J. The International Knee Documentation Committee subjective knee evaluation form: normative data. Am J Sports Med 2006; 34(1): 128-35. doi: 10.1177/0363546505280214. DOI: https://doi.org/10.1177/0363546505280214

Pirani S, Beauchamp R D, Li D, Sawatzky B. Soft tissue anatomy of proximal femoral focal deficiency. J Pediatr Orthop 1991; 11(5): 563-70. doi: 10.1097/01241398-199109000-00001. DOI: https://doi.org/10.1097/01241398-199109000-00001

Krieg A H, Gehmert S, Neeser O L, Kaelin X, Speth B M. Gain of length-loss of strength? Alteration in muscle strength after femoral leg lengthening in young patients: a prospective longitudinal observational study. J Pediatr Orthop B 2018; 27(5): 399-403. doi: 10.1097/bpb.0000000000000479. DOI: https://doi.org/10.1097/BPB.0000000000000479

Tan L, Wang T, Li Y-H, Yang T, Hao B, Zhu D, et al. Patellar tendon ossification after retrograde intramedullary nailing for distal femoral shaft fracture: a case report and review of the literature. Medicine (Baltimore) 2017; 96(47): e8875. doi: 10.1097/md.0000000000008875. DOI: https://doi.org/10.1097/MD.0000000000008875

Court-Brown C M, Will E, Christie J, McQueen M M. Reamed or unreamed nailing for closed tibial fractures: a prospective study in Tscherne C1 fractures. J Bone Joint Surg Br 1996; 78(4): 580-3. doi: 10.1302/0301-620x.78b4.0780580. DOI: https://doi.org/10.1302/0301-620X.78B4.0780580

Lee D H, Ryu K J, Song H R, Han S-H. Complications of the Intramedullary Skeletal Kinetic Distractor (ISKD) in distraction osteogenesis. Clin Orthop Relat Res 2014; 472(12): 3852-9. doi: 10.1007/s11999-014-3547-4. DOI: https://doi.org/10.1007/s11999-014-3547-4

Hammouda A I, Jauregui J J, Gesheff M G, Standard S C, Herzenberg J E. Trochanteric entry for femoral lengthening nails in children: is it safe? J Pediatr Orthop 2017; 37(4): 258-64. doi: 10.1097/bpo.0000000000000636. DOI: https://doi.org/10.1097/BPO.0000000000000636

Krieg A H, Lenze U, Speth B M, Hasler C C. Intramedullary leg lengthening with a motorized nail: indications, challenges, and outcome in 32 patients. Acta Orthop 2011; 82(3): 344-50. doi: 10.3109/17453674.2011.584209. DOI: https://doi.org/10.3109/17453674.2011.584209

Additional Files

Published

2023-03-22

How to Cite

Krieg, A. H., Dong, C., Schmid, M. P., Speth, B. M., Harder, D., & Donners, R. (2023). Long-term effects of retrograde approach on the knee after motorized femoral limb lengthening. Acta Orthopaedica, 94, 128–134. https://doi.org/10.2340/17453674.2023.10323

Issue

Section

Articles

Categories