Synthetic hydroxyapatite: a recruiting platform for biologically active molecules

Authors

  • Deepak Bushan Raina Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund
  • Yang Liu Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund
  • Hanna Isaksson Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund; Department of Biomedical Engineering, Lund University, Lund, Sweden
  • Magnus Tägil Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund
  • Lars Lidgren Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund

DOI:

https://doi.org/10.1080/17453674.2019.1686865

Abstract

Background and purpose — Targeted delivery of drugs is important to achieve efficient local concentrations and reduce systemic side effects. We hypothesized that locally implanted synthetic hydroxyapatite (HA) particles can act as a recruiting moiety for systemically administered drugs, leading to targeted drug accretion.

Methods — Synthetic HA particles were implanted ectopically in a muscle pouch in rats, and the binding of systemically circulating drugs such as zoledronic acid (ZA), tetracycline and 18F-fluoride (18F) was studied. The local biological effect was verified in an implant integration model in rats, wherein a hollow implant was filled with synthetic HA particles and the animals were given systemic ZA, 2-weeks post-implantation. The effect of HA particle size on drug binding and the possibility of reloading HA particles were also evaluated in the muscle pouch.

Results — The systemically administered biomolecules (ZA, tetracycline and 18F) all sought the HA moiety placed in the muscle pouch. Statistically significant higher peri- implant bone volume and peak force were observed in the implant containing HA particles compared with the empty implant. After a single injection of ZA at 2 weeks, micro HA particles showed a tendency to accumulate more 14C-zoledronic acid (14C-ZA) than nano-HA particles in the muscle pouch. HA particles could be reloaded when ZA was given again at 4 weeks, showing increased 14C-ZA accretion by 73% in microparticles and 77% in nanoparticles.

Interpretation — We describe a novel method of systemic drug loading resulting in targeted accretion in locally implanted particulate HA, thereby biologically activating the material.

Downloads

Download data is not yet available.

Downloads

Published

2019-11-04

How to Cite

Raina, D. B. ., Liu, Y. ., Isaksson , H. ., Tägil, M. ., & Lidgren, L. . (2019). Synthetic hydroxyapatite: a recruiting platform for biologically active molecules. Acta Orthopaedica, 91(2), 126–132. https://doi.org/10.1080/17453674.2019.1686865