Guideline for RSA and CT-RSA implant migration measurements: an update of standardizations and recommendations
DOI:
https://doi.org/10.2340/17453674.2024.40709Keywords:
Arthroplasty, Biomechanics, Implants, Radiological imaging, RadiostereometryAbstract
Opening remarks: These guidelines are the result of discussions within a diverse group of RSA researchers. They were approved in December 2023 by the board and selected members of the International Radiostereometry Society to update the guidelines by Valstar et al. [1]. By adhering to these guidelines, RSA studies will become more transparent and consistent in execution, presentation, reporting, and interpretation. Both authors and reviewers of scientific papers using RSA may use these guidelines, summarized in the Checklist, as a reference. Deviations from these guidelines should have the underlying rationale stated.
Downloads
References
Valstar E R, Gill R, Ryd L, Flivik G, Börlin N, Kärrholm J. Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 2005; 76: 563-72. doi: 10.1080/17453670510041574. DOI: https://doi.org/10.1080/17453670510041574
Selvik G. Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system (Reprint of 1970 thesis). Acta Orthop Scand 1989; (Suppl. 232): 1-51. doi: 10.3109/17453678909154184. DOI: https://doi.org/10.3109/17453678909154184
Kärrholm J, Gill R H, Valstar E R. The history and future of radiostereometric analysis. Clin Orthop Relat Res 2006; 448: 10-21. doi: 10.1097/01.blo.0000224001.95141.fe. DOI: https://doi.org/10.1097/01.blo.0000224001.95141.fe
Fontalis A, Haddad F S. Roentgen stereophotogrammetric analysis: still a very valuable tool in the orthopaedic research armamentarium. Bone Joint Res 2022; 11: 210-13. doi: 10.1302/2046-3758.114.BJR-2021-0593.R1. DOI: https://doi.org/10.1302/2046-3758.114.BJR-2021-0593.R1
Nelissen R G, Pijls B G, Kärrholm J, Malchau H, Nieuwenhuijse M J, Valstar E R. RSA and registries: the quest for phased introduction of new implants. J Bone Joint Surg Am 2011; 93(Suppl. 3): 62-65. doi: 10.2106/JBJS.K.00907. DOI: https://doi.org/10.2106/JBJS.K.00907
Overgaard S, Grupp T M, Nelissen R G, Cristofolini L, Lubbeke A, Jager M, et al. Introduction of innovations in joint arthroplasty: recommendations from the ‘EFORT implant and patient safety initiative’. EFORT Open Rev 2023; 8: 509-21. doi: 10.1530/EOR-23-0072. DOI: https://doi.org/10.1530/EOR-23-0072
Mjöberg B. Is early migration enough to explain late clinical loosening of hip prostheses? EFORT Open Rev 2020; 5: 113-17. doi: 10.1302/2058-5241.5.190014. DOI: https://doi.org/10.1302/2058-5241.5.190014
Valstar E, Kaptein B, Nelissen R. Radiostereometry and new prostheses. Acta Orthop 2012; 83: 103-4. doi: 10.3109/17453674.2012.678796. DOI: https://doi.org/10.3109/17453674.2012.678796
Pijls B G, Nelissen R G. The era of phased introduction of new implants. Bone Joint Res 2016; 5: 215-217. doi: 10.1302/2046-3758.56.2000653. DOI: https://doi.org/10.1302/2046-3758.56.2000653
Pijls B G, Plevier J W M, Nelissen R. RSA migration of total knee replacements. Acta Orthop 2018; 89: 320-8. doi: 10.1080/17453674.2018.1443635. DOI: https://doi.org/10.1080/17453674.2018.1443635
Ryd L, Albrektsson B E J, Carlsson L, Dansgard F, Herberts P, Lindstrand A, et al. Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg Br 1995; 77b: 377-83. doi: 10.1302/0301-620x.77b3.7744919. DOI: https://doi.org/10.1302/0301-620X.77B3.7744919
Hasan S, Kaptein B L, Nelissen R, van Hamersveld K T, Toksvig-Larsen S, Marang-van de Mheen P J. The influence of postoperative coronal alignment on tibial migration after total knee arthroplasty in preoperative varus and valgus knees: a secondary analysis of 10 randomized controlled trials using radiostereometric analysis. J Bone Joint Surg Am 2021; 103: 2281-90. doi: 10.2106/JBJS.20.01659. DOI: https://doi.org/10.2106/JBJS.20.01659
van Hamersveld K T, Marang-van de Mheen P J, Nelissen R. The effect of coronal alignment on tibial component migration following total knee arthroplasty: a cohort study with long-term radiostereometric analysis results. J Bone Joint Surg Am 2019; 101: 1203-12. doi: 10.2106/JBJS.18.00691. DOI: https://doi.org/10.2106/JBJS.18.00691
Teeter M G, Wihlidal J, McCalden R W, Yuan X, MacDonald S J, Lanting B A, et al. Radiostereometric analysis permits in vivo measurement of very small levels of wear in TKA. Clin Orthop Relat Res 2019; 477: 80-90. doi: 10.1097/CORR.0000000000000399. DOI: https://doi.org/10.1097/CORR.0000000000000399
van Ijsseldijk E A, Valstar E R, Stoel B C, de Ridder R, Nelissen R G, Kaptein B L. Measuring polyethylene wear in total knee arthroplasty by RSA: differences between weight-bearing and non-weight-bearing positioning. J Orthop Res 2014; 32: 613-17. doi: 10.1002/jor.22579. DOI: https://doi.org/10.1002/jor.22579
Bragdon C R, Thanner J, Greene M E, Malchau H, Digas G, Harris W H, et al. Standing versus supine radiographs in RSA evaluation of femoral head penetration. Clin Orthop Relat Res 2006; 448: 46-51. doi: 10.1097/01.blo.0000224012.50292.67. DOI: https://doi.org/10.1097/01.blo.0000224012.50292.67
Stilling M, Kold S, de Raedt S, Andersen N T, Rahbek O, Søballe K. Superior accuracy of model-based radiostereometric analysis for measurement of polyethylene wear: a phantom study. Bone Joint Res 2012; 1: 180-91. doi: 10.1302/2046-3758.18.2000041. DOI: https://doi.org/10.1302/2046-3758.18.2000041
Callary S A, Solomon L B, Holubowycz O T, Campbell D G, Howie D W. Accuracy of methods to measure femoral head penetration within metal-backed acetabular components. J Orthop Res 2017; 35: 988-96. doi: 10.1002/jor.23356. DOI: https://doi.org/10.1002/jor.23356
Wingstrand M, Elfving M, Hägglund G, Lauge-Pedersen H. Postoperative growth rate affects time to growth arrest after percutaneous physiodesis: a radiostereometric analysis. J Child Orthop 2022; 16: 174-82. doi: 10.1177/18632521221105781. DOI: https://doi.org/10.1177/18632521221105781
Lauge-Pedersen H, Hägglund G. Eight plate should not be used for treating leg length discrepancy. J Child Orthop 2013; 7: 285-8. doi: 10.1007/s11832-013-0506-7. DOI: https://doi.org/10.1007/s11832-013-0506-7
Madanat R, Makinen T J, Moritz N, Mattila K T, Aro H T. Accuracy and precision of radiostereometric analysis in the measurement of three-dimensional micromotion in a fracture model of the distal radius. J Orthop Res 2005; 23: 481-8. doi: 10.1016/j.orthres.2004.07.002. DOI: https://doi.org/10.1016/j.orthres.2004.07.002
Madanat R, Moritz N, Larsson S, Aro H T. RSA applications in monitoring of fracture healing in clinical trials. Scand J Surg 2006; 95: 119-27. doi: 10.1177/145749690609500207. DOI: https://doi.org/10.1177/145749690609500207
Lee C, Copp J. Future modalities to assess fracture healing. OTA Int 2022; 5: e161. doi: 10.1097/OI9.0000000000000161. DOI: https://doi.org/10.1097/OI9.0000000000000161
Koning O H, Oudegeest O R, Valstar E R, Garling E H, van der Linden E, Hinnen J W, et al. Roentgen stereophotogrammetric analysis: an accurate tool to assess stent-graft migration. J Endovasc Ther 2006; 13: 468-75. doi: 10.1583/06-1842MR.1. DOI: https://doi.org/10.1583/06-1842MR.1
ISO 16087:2013(en). Implants for surgery: Roentgen stereophotogrammetric analysis for the assessment of migration of orthopaedic implants. 1st ed., 2013.Available at: https://www.iso.org/obp/ui/#iso:std:iso:16087:ed-1:v1:en
Kaptein B L, Valstar E R, Stoel B C, Rozing P M, Reiber J H. A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 2003; 36: 873-82. doi: 10.1016/s0021-9290(03)00002-2. DOI: https://doi.org/10.1016/S0021-9290(03)00002-2
Kaptein B L, Valstar E R, Stoel B C, Reiber H C, Nelissen R G. Clinical validation of model-based RSA for a total knee prosthesis. Clin Orthop Relat Res 2007; 464: 205-9. doi: 10.1097/BLO.0b013e318157laa5. DOI: https://doi.org/10.1097/BLO.0b013e3181571aa5
Scheerlinck T, Polfliet M, Deklerck R, Van Gompel G, Buls N, Vandemeulebroucke J. Development and validation of an automated and marker-free CT-based spatial analysis method (CTSA) for assessment of femoral hip implant migration: in vitro accuracy and precision comparable to that of radiostereometric analysis (RSA). Acta Orthop 2016; 87: 139-45. doi: 10.3109/17453674.2015.1123569. DOI: https://doi.org/10.3109/17453674.2015.1123569
Brodén C, Olivecrona H, Maguire G Q Jr, Noz M E, Zeleznik M P, Sköldenberg O. Accuracy and precision of three-dimensional low dose CT compared to standard RSA in acetabular cups: an experimental study. Biomed Res Int 2016; 2016: 5909741. doi: 10.1155/2016/5909741. DOI: https://doi.org/10.1155/2016/5909741
Brodén C, Sandberg O, Sköldenberg O, Stigbrand H, Hänni M, Giles J W, et al. Low-dose CT-based implant motion analysis is a precise tool for early migration measurements of hip cups: a clinical study of 24 patients. Acta Orthop 2020; 91: 260-5. doi: 10.1080/17453674.2020.1725345. DOI: https://doi.org/10.1080/17453674.2020.1725345
Hurry J K, Rehan S, Spurway A J, Laende E K, Astephen Wilson J L, Logan K J, et al. The reliability of radiostereometric analysis in determining physeal motion in slipped capital femoral epiphysis in standard uniplanar and low-dose EOS biplanar radiography: a phantom model study. J Pediatr Orthop B 2018; 27: 496-502. doi: 10.1097/BPB.0000000000000516. DOI: https://doi.org/10.1097/BPB.0000000000000516
Petersen E T, Vind T D, Jurgens-Lahnstein J H, Christensen R, de Raedt S, Bruel A, et al. Evaluation of automated radiostereometric image registration in total knee arthroplasty utilizing a synthetic-based and a CT-based volumetric model. J Orthop Res 2023; 41: 436-46. doi: 10.1002/jor.25359. DOI: https://doi.org/10.1002/jor.25359
Röhrl SM. “Great balls on fire:” known algorithm with a new instrument? Acta Orthop 2020; 91: 621-3. doi: 10.1080/17453674.2020.1840029. DOI: https://doi.org/10.1080/17453674.2020.1840029
Olivecrona H, Olivecrona L, Weidenhielm L, Noz M E, Kardos J, Maguire G Q, et al. A new technique for diagnosis of acetabular cup loosening using computed tomography: preliminary experience in 10 patients. Acta Orthop 2008; 79: 346-53. doi: 10.1080/17453670710015247. DOI: https://doi.org/10.1080/17453670710015247
Sandberg O H, Kärrholm J, Olivecrona H, Röhrl S M, Sköldenberg O G, Brodén C. Computed tomography-based radiostereometric analysis in orthopedic research: practical guidelines. Acta Orthop 2023; 94: 373-8. doi: 10.2340/17453674.2023.15337. DOI: https://doi.org/10.2340/17453674.2023.15337
Stoel B. Use of artificial intelligence in imaging in rheumatology: current status and future perspectives. RMD Open 2020; 6: e001063. doi: 10.1136/rmdopen-2019-001063. DOI: https://doi.org/10.1136/rmdopen-2019-001063
Christensson A, Nemati H M, Flivik G. Comparison between model-based RSA and an AI-based CT-RSA: an accuracy study of 30 patients. Acta Orthop 2024; 95: 39-46. doi: 10.2340/17453674.2024.35749. DOI: https://doi.org/10.2340/17453674.2024.35749
Klebingat S, Bien T, Hurtgen J, Grover P, Dreischarf M, Alkhateeb S, et al. Accurate determination of hip implant wear, cup anteversion and inclination through AI automated 2D-3D registration. J Orthop Res 2023; 41: 1985-95. doi: 10.1002/jor.25538. DOI: https://doi.org/10.1002/jor.25538
Yi PH, Mutasa S, Fritz J. AI MSK clinical applications: orthopedic implants. Skeletal Radiol 2022; 51: 305-13. doi: 10.1007/s00256-021-03879-5. DOI: https://doi.org/10.1007/s00256-021-03879-5
Shah A K, Lavu M S, Hecht C J 2nd, Burkhart R J, Kamath A F. Understanding the use of artificial intelligence for implant analysis in total joint arthroplasty: a systematic review. Arthroplasty 2023; 5: 54. doi: 10.1186/s42836-023-00209-z. DOI: https://doi.org/10.1186/s42836-023-00209-z
Farhadi F, Barnes M R, Sugito H R, Sin J M, Henderson E R, Levy J J. Applications of artificial intelligence in orthopaedic surgery. Front Med Technol 2022; 4: 995526. doi: 10.3389/fmedt.2022.995526. DOI: https://doi.org/10.3389/fmedt.2022.995526
Loppini M, Gambaro F M, Chiappetta K, Grappiolo G, Bianchi A M, Corino V D A. Automatic identification of failure in hip replacement: an artificial intelligence approach. Bioengineering (Basel) 2022; 9: 288. doi: 10.3390/bioengineering9070288. DOI: https://doi.org/10.3390/bioengineering9070288
Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inf Fusion 2022; 77: 29-52. doi: 10.1016/j.inffus.2021.07.016. DOI: https://doi.org/10.1016/j.inffus.2021.07.016
Karim M R, Islam T, Shajalal M, Beyan O, Lange C, Cochez M, et al. Explainable AI for bioinformatics: methods, tools and applications. Brief Bioinform 2023; 24 doi: 10.1093/bib/bbad236. DOI: https://doi.org/10.1093/bib/bbad236
Madanat R, Makinen T J, Aro H T, Bragdon C, Malchau H. Adherence of hip and knee arthroplasty studies to RSA standardization guidelines: a systematic review. Acta Orthop 2014; 85: 447-55. doi: 10.3109/17453674.2014.934187. DOI: https://doi.org/10.3109/17453674.2014.934187
Pijls B G. Reflections on the RSA guidelines. Acta Orthop 2020; 91: 232-3. doi: 10.1080/17453674.2020.1763568. DOI: https://doi.org/10.1080/17453674.2020.1763568
Sandberg O, Carlsson S, Harbom E, Cappelen V, Tholen S, Olivecrona H, et al. Inducible displacement CT increases the diagnostic accuracy of aseptic loosening in primary total hip arthroplasty. Acta Orthop 2022; 93: 831-6. doi: 10.2340/17453674.2022.5240. DOI: https://doi.org/10.2340/17453674.2022.5240
Lam Tin Cheung K, Lanting B A, McCalden R W, Yuan X, MacDonald S J, Naudie D D, et al. Inducible displacement of cemented tibial components ten years after total knee arthroplasty. Bone Joint J 2018; 100-B: 170-5. doi: 10.1302/0301-620X.100B2.BJJ-2017-0428.R2. DOI: https://doi.org/10.1302/0301-620X.100B2.BJJ-2017-0428.R2
Dunbar M J, Fong J W, Wilson D A, Hennigar A W, Francis P A, Glazebrook M A. Longitudinal migration and inducible displacement of the Mobility Total Ankle System. Acta Orthop 2012; 83: 394-400. doi: 10.3109/17453674.2012.712890. DOI: https://doi.org/10.3109/17453674.2012.712890
Toksvig-Larsen S, Ryd L, Lindstrand A. Effect of a cooled saw blade on prosthesis fixation: randomized radiostereometry of 33 knee cases. Acta Orthop Scand 1994; 65: 533-7. doi: 10.3109/17453679409000908. DOI: https://doi.org/10.3109/17453679409000908
Bragonzoni L, Russo A, Loreti I, Montagna L, Visani A, Marcacci M. The stress-inducible displacement detected through RSA in non-migrating UKR. Knee 2005; 12: 301-6. doi: 10.1016/j.knee.2004.09.006. DOI: https://doi.org/10.1016/j.knee.2004.09.006
Aronson A S, Jonsson N, Alberius P. Tantalum markers in radiography: an assessment of tissue reactions. Skeletal Radiol 1985; 14: 207-11. doi: 10.1007/BF00355566. DOI: https://doi.org/10.1007/BF00355566
Black J. Biological performance of tantalum. Clin Mater 1994; 16: 167-73. doi: 10.1016/0267-6605(94)90113-9. DOI: https://doi.org/10.1016/0267-6605(94)90113-9
Jørgensen P B, Kaptein B L, Søballe K, Jakobsen S S, Stilling M. Polyethylene liner motion in dual-mobility hip prostheses: static and dynamic radiostereometry in 16 patients 1 year after operation. Acta Orthop 2022; 93: 375-81. doi: 10.2340/17453674.2022.2253. DOI: https://doi.org/10.2340/17453674.2022.2253
Lam-Tin-Cheung K, Yuan X, Nikolov H N, Lanting B A, Naudie D D, Teeter M G. Marker-based technique for visualizing radiolucent implant components in radiographic imaging. J Orthop Res 2017; 35: 2017-22. doi: 10.1002/jor.23475. DOI: https://doi.org/10.1002/jor.23475
Börlin N, Röhrl S M, Bragdon C R. RSA wear measurements with or without markers in total hip arthroplasty. J Biomech 2006; 39: 1641-50. doi: 10.1016/j.jbiomech.2005.05.004. DOI: https://doi.org/10.1016/j.jbiomech.2005.05.004
Valstar E R, Spoor C W, Nelissen R G H H, Rozing P M. Roentgen stereophotogrammetric analysis of metal-backed hemispherical cups without attached markers. J Orthop Res 1997; 15: 869-73. doi: 10.1002/jor.1100150612. DOI: https://doi.org/10.1002/jor.1100150612
Kärrholm J. Roentgen stereophotogrammetry: review of orthopedic applications. Acta Orthop Scand 1989; 60: 491-503. doi: 10.3109/17453678909149328. DOI: https://doi.org/10.3109/17453678909149328
Selvik G. Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system. Thesis: University of Lund, Departments of Anatomy and Diagnostic Radiology, Lund, Sweden 1974
Söderkvist I, Wedin P A. Determining the movements of the skeleton using well-configured markers. J Biomech 1993; 26: 1473-7. doi: 10.1016/0021-9290(93)90098-y. DOI: https://doi.org/10.1016/0021-9290(93)90098-Y
Hansen T B, Stilling M. Equally good fixation of cemented and uncemented cups in total trapeziometacarpal joint prostheses: a randomized clinical RSA study with 2-year follow-up. Acta Orthop 2013; 84: 98-105. doi: 10.3109/17453674.2013.765625. DOI: https://doi.org/10.3109/17453674.2013.765625
van der Lelij T J N, Koster L A, Marang-van de Mheen P J, Toksvig-Larse S, Nelissen R G H H, Kaptein B L. Influence of marker-selection method in radiostereometric analysis of total knee arthroplasty on tibial baseplate migration patterns: a secondary analysis of a randomized controlled trial with 5-year follow-up. Acta Orthop 2024; 94: 157-65. doi: 10.2340/17453674.2024.40184 DOI: https://doi.org/10.2340/17453674.2024.40184
Kaptein B L, Valstar E R, Stoel B C, Rozing P M, Reiber J H. A new type of model-based Roentgen stereophotogrammetric analysis for solving the occluded marker problem. J Biomech 2005; 38: 2330-4. doi: 10.1016/j.jbiomech.2004.09.018. DOI: https://doi.org/10.1016/j.jbiomech.2004.09.018
Poulsen M, Stødle A H, Nordsletten L, Röhrl S M. CT-based radiostereometric analysis for assessing midfoot kinematics: precision compared with marker-based radiostereometry. Acta Orthop 2023; 94: 366-72. doi: 10.2340/17453674.2023.16905. DOI: https://doi.org/10.2340/17453674.2023.16905
Jurgens-Lahnstein J H, Petersen E T, Laursen M, Hauskov Iversen C, Kaptein B L, Lindgren L, et al. Development, construction, and validation of a thinner uniplanar calibration cage for radiostereometry. J Orthop Res 2022; 40: 1645-53. doi: 10.1002/jor.25193. DOI: https://doi.org/10.1002/jor.25193
Valstar E R, Nelissen R G H H, Reiber J H C, Rozing P M. The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants. Isprs J Photogramm 2002; 56: 376389. doi: 10.1016/S0924-2716(02)00064-3. DOI: https://doi.org/10.1016/S0924-2716(02)00064-3
Bragdon C R, Malchau H, Yuan X, Perinchief R, Karrholm J, Borlin N, et al. Experimental assessment of precision and accuracy of radiostereometric analysis for the determination of polyethylene wear in a total hip replacement model. J Orthop Res 2002; 20: 688-95. doi: 10.1016/S0736-0266(01)00171-1. DOI: https://doi.org/10.1016/S0736-0266(01)00171-1
Jørgensen P B, Krag-Nielsen N, Lindgren L, Morup R M S, Kaptein B, Stilling M. Radiostereometric analysis: comparison of radiation dose and precision in digital and computed radiography. Arch Orthop Trauma Surg 2023; 143: 5919-26. doi: 10.1007/s00402-022-04674-0. DOI: https://doi.org/10.1007/s00402-022-04674-0
Valstar E R, Vrooman H A, Toksvig-Larsen S, Ryd L, Nelissen R G. Digital automated RSA compared to manually operated RSA. J Biomech 2000; 33: 1593-9. doi: 10.1016/s0021-9290(00)00138-x. DOI: https://doi.org/10.1016/S0021-9290(00)00138-X
Christensen R, Petersen E T, Jurgens-Lahnstein J, Rytter S, Lindgren L, De Raedt S, et al. Assessment of knee kinematics with dynamic radiostereometry: validation of an automated model-based method of analysis using bone models. J Orthop Res 2021; 39: 597-608. doi: 10.1002/jor.24875. DOI: https://doi.org/10.1002/jor.24875
Blom I F, Koster L A, Brinke B T, Mathijssen N M C. Effective radiation dose in radiostereometric analysis of the hip. Acta Orthop 2020; 91: 390-5. doi: 10.1080/17453674.2020.1767443. DOI: https://doi.org/10.1080/17453674.2020.1767443
Teeuwisse W, Berting R, Geleijns J. Stralingbelasting bij orthopedische radiologie. Gamma 1998; 8: 197-200.
European Commission. Directorate-General for Environment, Nuclear Safety, Civil Protection. Guidance on medical exposures in medical and biomedical research. Radiation Protection 1998; 99.
Fraser A N, Tsukanaka M, Fjalestad T, Madsen J E, Röhrl S M. Model-based RSA is suitable for clinical trials on the glenoid component of reverse total shoulder arthroplasty. J Orthop Res 2018; 36: 3299-307. doi: 10.1002/jor.24111. DOI: https://doi.org/10.1002/jor.24111
Niesen A E, Garverick A L, Howell S M, Hull M L. Reorienting the tibial baseplate improves the registration accuracy of model-based radiostereometric analysis. J Biomech 2020; 113: 110078. doi: 10.1016/j.jbiomech.2020.110078. DOI: https://doi.org/10.1016/j.jbiomech.2020.110078
van Embden D, Stollenwerck G A, Koster L A, Kaptein B L, Nelissen R G, Schipper I B. The stability of fixation of proximal femoral fractures: a radiostereometric analysis. Bone Joint J 2015; 97-B: 391-7. doi: 10.1302/0301-620X.97B3.35077. DOI: https://doi.org/10.1302/0301-620X.97B3.35077
Ramsey D K, Wretenberg P F. Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin Biomech (Bristol, Avon) 1999; 14: 595-611. doi: 10.1016/s0268-0033(99)00015-7. DOI: https://doi.org/10.1016/S0268-0033(99)00015-7
Niesen A E, Kaptein B L, Hull M L. Conditions for use and implementation of globally-aligned versus local baseplate coordinate systems when computing migration using radiostereometric analysis. J Biomech Eng 2023; 145 doi: 10.1115/1.4056802. DOI: https://doi.org/10.1115/1.4056802
Lindgren L, Jorgensen P B, Morup R M S, Jensen M, Romer L, Kaptein B, et al. Similar patient positioning: a key factor in follow-up studies when using model-based radiostereometric analysis of the hip. Radiography 2020; 26: E45-E51. doi: 10.1016/j.radi.2019.10.009. DOI: https://doi.org/10.1016/j.radi.2019.10.009
Muharemovic O, Troelsen A, Thomsen M G, Kallemose T, Gosvig K K. The effect of personalized versus standard patient protocols for radiostereometric analysis (RSA). Radiography 2018; 24: e31-e36. doi: 10.1016/j.radi.2017.11.006. DOI: https://doi.org/10.1016/j.radi.2017.11.006
Nieuwenhuijse M J, Valstar E R, Nelissen R G. 5-year clinical and radiostereometric analysis (RSA) follow-up of 39 CUT femoral neck total hip prostheses in young osteoarthritis patients. Acta Orthop 2012; 83: 334-41. doi: 10.3109/17453674.2012.702392. DOI: https://doi.org/10.3109/17453674.2012.702392
Alsousou J, Oragui E, Martin A, Strickland L, Newman S, Kendrick B, et al. Primary stability of a proximally coated and tapered stem. Bone Joint J 2021; 103-B: 644-9. doi: 10.1302/0301-620X.103B4.BJJ-2020-1648.R1. DOI: https://doi.org/10.1302/0301-620X.103B4.BJJ-2020-1648.R1
Gudnason A, Adalberth G, Nilsson K G, Hailer N P. Tibial component rotation around the transverse axis measured by radiostereometry predicts aseptic loosening better than maximal total point motion. Acta Orthop 2017; 88: 282-7. doi: 10.1080/17453674.2017.1297001. DOI: https://doi.org/10.1080/17453674.2017.1297001
Nilsson K G, Kärrholm J. Increased varus–valgus tilting of screw-fixated knee prostheses: stereoradiographic study of uncemented versus cemented tibial components. J Arthroplasty 1993; 8: 529-40. PMID: 8245999. DOI: https://doi.org/10.1016/S0883-5403(06)80025-2
Niesen A E, Hull M L. Propagation of registration errors into the change in maximum total point motion for determining stability of tibial base-plates. Comput Methods Biomech Biomed Engin 2021; 24: 1019-25. doi: 10.1080/10255842.2020.1865324. DOI: https://doi.org/10.1080/10255842.2020.1865324
Derbyshire B, Prescott R J, Porter M L. Notes on the use and interpretation of radiostereometric analysis. Acta Orthop 2009; 80: 124-30. doi: 10.1080/17453670902807474. DOI: https://doi.org/10.1080/17453670902807474
Ranstam J, Ryd L, Önsten I. Accurate accuracy assessment: review of basic principles. Acta Orthop Scand 2000; 71: 106-108. doi: 10.1080/00016470052944017. DOI: https://doi.org/10.1080/00016470052944017
ISO. Accuracy (trueness and precision) of measurement methods and results. Part 1: General principles and definitions. Geneva: ISO; 1998.
Kaptein B L, Valstar E R, Stoel B C, Rozing P M, Reiber J H C. A new type of model-based Roentgen stereophotogrammetric analysis for solving the occluded marker problem. J Biomech 2005; 38: 2330-4. doi: 10.1016/j.jbiomech.2004.09.018. DOI: https://doi.org/10.1016/j.jbiomech.2004.09.018
Önsten I, Berzins A, Shott S, Sumner D R. Accuracy and precision of radiostereometric analysis in the measurement of THR femoral component translations: human and canine in vitro models. J Orthop Res 2001; 19: 1162-7. doi: 10.1016/S0736-0266(01)00039-0. DOI: https://doi.org/10.1016/S0736-0266(01)00039-0
Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-10. doi: 10.1016/s0140-6736(86)90837-8. DOI: https://doi.org/10.1016/S0140-6736(86)90837-8
Madanat R, Moritz N, Aro H T. Three-dimensional computer simulation of radiostereometric analysis (RSA) in distal radius fractures. J Biomech 2007; 40: 1855-61. doi: 10.1016/j.jbiomech.2006.07.004. DOI: https://doi.org/10.1016/j.jbiomech.2006.07.004
Niesen A E, Hull M L. Measurement error versus repeated measurements: a guide describing two methods for computing bias and precision of migration measurements from double examinations using radiostereometric analysis. J Biomech Eng 2022; 144 doi: 10.1115/1.4054375. DOI: https://doi.org/10.1115/1.4054375
Horsager K, Kaptein B L, Jørgensen P B, Jepsen C F, Stilling M. Oxford medial unicompartmental knees display contact-loss during step-cycle motion and bicycle motion: a dynamic radiostereometric study. J Orthop Res 2018; 36: 357-64. doi: 10.1002/jor.23625. DOI: https://doi.org/10.1002/jor.23625
Gascoyne T, Parashin S, Teeter M, Bohm E, Laende E, Dunbar M, et al. In vivo wear measurement in a modern total knee arthroplasty with model-based radiostereometric analysis. Bone Joint J 2019; 101-B: 1348-55. doi: 10.1302/0301-620X.101B11.BJJ-2018-1447.R2. DOI: https://doi.org/10.1302/0301-620X.101B11.BJJ-2018-1447.R2
Ranstam J, Turkiewicz A, Boonen S, Van Meirhaeghe J, Bastian L, Wardlaw D. Alternative analyses for handling incomplete follow-up in the intention-to-treat analysis: the randomized controlled trial of balloon kyphoplasty versus non-surgical care for vertebral compression fracture (FREE). BMC Med Res Methodol 2012; 12: 35. doi: 10.1186/1471-2288-12-35. DOI: https://doi.org/10.1186/1471-2288-12-35
Pijls B G, Nieuwenhuijse M J, Fiocco M, Plevier J W, Middeldorp S, Nelissen R G, et al. Early proximal migration of cups is associated with late revision in THA: a systematic review and meta-analysis of 26 RSA studies and 49 survival studies. Acta Orthop 2012; 83: 583591. doi: 10.3109/17453674.2012.745353. DOI: https://doi.org/10.3109/17453674.2012.745353
Pijls B G, Valstar E R, Nouta K A, Plevier J W, Fiocco M, Middeldorp S, et al. Early migration of tibial components is associated with late revision: a systematic review and meta-analysis of 21,000 knee arthroplasties. Acta Orthop 2012; 83: 614-24. doi: 10.3109/17453674.2012.747052. DOI: https://doi.org/10.3109/17453674.2012.747052
Malak T T, Broomfield J A, Palmer A J, Hopewell S, Carr A, Brown C, et al. Surrogate markers of long-term outcome in primary total hip arthroplasty: a systematic review. Bone Joint Res 2016; 5: 206-14. doi: 10.1302/2046-3758.56.2000568. DOI: https://doi.org/10.1302/2046-3758.56.2000568
Puijk R, Puijk R H, Laende E K, Dunbar M J, Plevier J W M, Nolte P A, et al. 6-month migration sufficient for evaluation of total knee replacements: a systematic review and meta-analysis. Acta Orthop 2023; 94: 577-87. doi: 10.2340/17453674.2023.24579. DOI: https://doi.org/10.2340/17453674.2023.24579
Shah R P, MacLean L, Paprosky W G, Sporer S. Routine use of radiostereometric analysis in elective hip and knee arthroplasty patients: surgical impact, safety, and bead stability. J Am Acad Orthop Surg 2018; 26: e173-e180. doi: 10.5435/JAAOS-D-17-00071. DOI: https://doi.org/10.5435/JAAOS-D-17-00071
Grewal R, Rimmer M G, Freeman M A. Early migration of prostheses related to long-term survivorship: comparison of tibial components in knee replacement. J Bone Joint Surg Br 1992; 74: 239-42. doi: 10.1302/0301-620X.74B2.1544960. DOI: https://doi.org/10.1302/0301-620X.74B2.1544960
Kärrholm J, Borssen B, Löwenhielm G, Snorrason F. Does early micromotion of femoral stem prostheses matter? 4–7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br 1994; 76: 912-7. PMID: 7983118. DOI: https://doi.org/10.1302/0301-620X.76B6.7983118
Nieuwenhuijse M J, Nelissen R G, Schoones J W, Sedrakyan A. Appraisal of evidence base for introduction of new implants in hip and knee replacement: a systematic review of five widely used device technologies. BMJ 2014; 349: g5133. doi: 10.1136/bmj.g5133. DOI: https://doi.org/10.1136/bmj.g5133
Broberg J S, Koff M F, Howard J L, Lanting B A, Potter H G, Teeter M G. A multimodal assessment of cementless tibial baseplate fixation using radiography, radiostereometric analysis, and magnetic resonance imaging. J Orthop Res 2024; 42: 100-8. doi: 10.1002/jor.25662. DOI: https://doi.org/10.1002/jor.25662
Wilson D A, Astephen J L, Hennigar A W, Dunbar M J. Inducible displacement of a trabecular metal tibial monoblock component. J Arthroplasty 2010; 25: 893-900. doi: 10.1016/j.arth.2009.06.015. DOI: https://doi.org/10.1016/j.arth.2009.06.015
Moher D, Hopewell S, Schulz K F, Montori V, Gotzsche P C, Devereaux P J, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 2010; 340: c869. doi: 10.1136/bmj.c869. DOI: https://doi.org/10.1136/bmj.c869
von Elm E, Altman D G, Egger M, Pocock S J, Gotzsche P C, Vandenbroucke J P, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008; 61: 344-9. doi: 10.1016/j.jclinepi.2007.11.008. DOI: https://doi.org/10.1016/j.jclinepi.2007.11.008
Champely S. Pwr: basic functions for power analysis. Available from: https://CRAN.R-project.org/package=pwr, 2020.
Cohen J. Statistical power analysis for the behavioral sciences: Mahwah, NJ: Lawrence Erlbaum Associates; 1988.
Tu X M, Kowalski J, Zhang J, Lynch K G, Crits-Christoph P. Power analyses for longitudinal trials and other clustered designs. Stat Med 2004; 23: 2799-815. doi: 10.1002/sim.1869. DOI: https://doi.org/10.1002/sim.1869
Additional Files
Published
How to Cite
License
Copyright (c) 2024 Bart L Kaptein, Bart Pijls, Lennard Koster, Johan Kärrholm, Maury Hull, Abby Niesen, Petra Heesterbeek, Stuart Callary, Matthew Teeter, Trevor Gascoyne, Stephan M Röhrl, Gunnar Flivik, Laura Bragonzoni, Elise Laende, Olof Sandberg, L Bogdan Solomon, Rob Nelissen, Maiken Stilling
This work is licensed under a Creative Commons Attribution 4.0 International License.