The relationship between hip displacement, scoliosis, and pelvic obliquity in 106 nonambulatory children with cerebral palsy: a longitudinal retrospective population-based study

Authors

  • Terje Terjesen Section of Children’s Orthopedics and Reconstructive Surgery, Oslo University Hospital, Oslo
  • Svend Vinje Section of Spinal Surgery, Division of Orthopaedic Surgery, Oslo University Hospital, Rikshospitalet and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Thomas Kibsgård Section of Spinal Surgery, Division of Orthopaedic Surgery, Oslo University Hospital, Rikshospitalet and Institute of Clinical Medicine, University of Oslo, Oslo, Norway https://orcid.org/0000-0003-4466-2172

DOI:

https://doi.org/10.2340/17453674.2024.39915

Abstract

Background and purpose: The relationship between hip displacement (HD), pelvic obliquity (PO), and scoliosis in nonambulatory children with cerebral palsy (CP) has not been clearly elucidated. The aims of this population-based study were to examine the prevalence and temporal sequence of these deformities in nonambulatory children with CP and to evaluate how probable it is that severe unilateral HD contributes to development of scoliosis.
Patients and methods: This longitudinal study comprised 106 nonambulatory children, enrolled in a surveillance program. Pelvic radiographs for measurements of migration percentage (MP) and PO were taken once a year from the diagnosis of HD. Spine radiographs were taken in patients with clinically detected scoliosis. Radiographic follow-up continued until skeletal maturity.
Results: Clinically significant scoliosis (Cobb angle ≥ 40°) occurred in 60 patients at a mean age of 11.8 years. 65 patients developed clinically significant HD (MP ≥ 40%) at a mean age of 4.8 years. 24 patients had no significant hip or spine deformities, 22 had HD only, 17 had scoliosis only, and 43 had both deformities. HD was diagnosed before scoliosis in all except 1 of the patients with both deformities. 14 of 19 patients with severe unilateral HD (MP ≥ 60%) had scoliosis convexity to the opposite side of the displaced hip.
Conclusion: The combination of scoliosis and HD was frequent, and HD was diagnosed first in almost all the patients. HD might be a contributory cause of scoliosis in patients with severe, unilateral HD, PO, and later scoliosis with convexity to the opposite side.

Downloads

Download data is not yet available.

References

Howard C B, McKibbin B, Williams L A, Mackie I. Factors affecting the incidence of hip dislocation in cerebral palsy. J Bone Joint Surg Br 1985; 67: 530-2. doi: 10.1302/0301-620X.67B4.4030844. DOI: https://doi.org/10.1302/0301-620X.67B4.4030844

Hägglund G, Pettersson K, Czuba T, Persson-Bunke M, Rodby-Bousquet E. Incidence of scoliosis in cerebral palsy: a population-based study of 962 young individuals. Acta Orthop 2018; 89: 443-7. doi: 10.1080/17453674.2018.1450091. DOI: https://doi.org/10.1080/17453674.2018.1450091

Madigan R R, Wallace S L. Scoliosis in the institutionalized cerebral palsy population. Spine 1981; 6: 583-90. doi: 10.1097/00007632-198111000-00009. DOI: https://doi.org/10.1097/00007632-198111000-00009

Terjesen T. The natural history of hip displacement in cerebral palsy. Dev Med Child Neurol 2012; 54: 951-7. doi: 10.1111/j.1469-8749.2012.04385.x. DOI: https://doi.org/10.1111/j.1469-8749.2012.04385.x

Samilson R L, Tsou P, Aamoth G, Green W. Dislocation and subluxation of the hip in cerebral palsy. J Bone Joint Surg Am 1972; 54: 863-73. PMID: 5055174. DOI: https://doi.org/10.2106/00004623-197254040-00017

Cooperman D R, Bartucci E, Dietrick E, Millar E A. Hip dislocation in cerebral palsy: long-term consequences. J Pediatr Orthop 1987; 7: 268-76. doi: 10.1097/01241398-198705000-00005. DOI: https://doi.org/10.1097/01241398-198705000-00005

Majd M E, Muldowny D S, Holt R T. Natural history of scoliosis in the institutionalized adult cerebral palsy population. Spine 1997; 22: 1461-6. doi: 10.1097/00007632-199707010-00007. DOI: https://doi.org/10.1097/00007632-199707010-00007

Senaran H, Shah S A, Glutting J J, Dabney K W, Miller F. The associated effects of untreated unilateral hip dislocation in cerebral palsy scoliosis. J Pediatr Orthop 2006; 26: 769-72. doi: 10.1097/01.bpo.0000242426.60995.29. DOI: https://doi.org/10.1097/01.bpo.0000242426.60995.29

Heidt C, Hollander K, Wawrzuta J, Molesworth C, Willoughby K, Thomason P, et al. The radiological assessment of pelvic obliquity in cerebral palsy and the impact on hip development. Bone Joint J Br 2015; 97: 1435-40. doi: 10.1302/0301-620X.97B10.35390. DOI: https://doi.org/10.1302/0301-620X.97B10.35390

Helenius I J, Viehweger E, Castelein R M. Cerebral palsy with dislocated hips and scoliosis: what to deal with first? J Child Orthop 2020; 14: 24-9. doi: 10.1302/1863-2548.14.190099. DOI: https://doi.org/10.1302/1863-2548.14.190099

Letts M, Shapiro L, Mulder K, Klassen O. The windblown hip syndrome in total body cerebral palsy. J Pediatr Orthop 1984; 4: 55-62. doi: 10.1097/01241398-198401000-00013. DOI: https://doi.org/10.1097/01241398-198401000-00013

Lonstein J E, Beck K. Hip dislocation and subluxation in cerebral palsy. J Pediatr Orthop 1986; 6: 521-6. doi: 10.1097/01241398-198609000-00001. DOI: https://doi.org/10.1097/01241398-198609000-00001

Garg S, Engelman G, Yoshihara H, McNair B, Chang F. The relationship of gross motor functional classification scale level and hip dysplasia on the pattern and progression of scoliosis in children with cerebral palsy. Spine Deformity 2013; 1: 266-71. doi: 10.1016/j.jspd.2013.05.002. DOI: https://doi.org/10.1016/j.jspd.2013.05.002

Hägglund G, Andersson S, Düppe H, Lauge-Pedersen H, Normark E, Westbom L. Prevention of dislocation of the hip in children with cerebral palsy: the first ten years of a population-based prevention programme. J Bone Joint Surg Br 2005; 87: 95-101. doi: 10.1097/01202412-200507000-00007. DOI: https://doi.org/10.1302/0301-620X.87B1.15146

Soo B, Howard J J, Boyd R N, Reid S M, Lanigan A, Wolfe R, et al. Hip displacement in cerebral palsy. J Bone Joint Surg Am 2006; 88: 121-9. doi: 10.2106/JBJS.E.00071. DOI: https://doi.org/10.2106/00004623-200601000-00015

Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 2007; 109: 8-14. PMID: 17370477.

Palisano R J, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39: 214-23. DOI: https://doi.org/10.1111/j.1469-8749.1997.tb07414.x

Reimers J. The stability of the hip in children. Acta Ortop Scand 1980; 51(Suppl. 184): 12-19. doi: 10.3109/ort.1980.51.suppl-184.01. DOI: https://doi.org/10.3109/ort.1980.51.suppl-184.01

Shore B J, Zurakowski D, Dufreny C, Powell D, Mathenay T H, Snyder B. Proximal femoral varus derotation osteotomy in children with cerebral palsy: the effect of age, gross motor classification system level, and surgical volume on surgical success. J Bone Joint Surg Am 2015; 97: 2024-31. doi: 10.2106/JBJS.O.00505. DOI: https://doi.org/10.2106/JBJS.O.00505

Saito N, Ebara S, Ohotsuka K, Kumeta H, Takaoka K. Natural history of scoliosis in cerebral palsy. Lancet 1998; 351: 1687-92. doi: 10.1016/S0140-6736(98)01302-6. DOI: https://doi.org/10.1016/S0140-6736(98)01302-6

Hägglund G, Lauge-Pedersen H, Persson M. Radiographic threshold values for hip screening in cerebral palsy. J Child Orthop 2007; 1: 43-7. doi: 10.1007/s11832-007-0012-x. DOI: https://doi.org/10.1007/s11832-007-0012-x

Hägglund G. Association between pelvic obliquity and scoliosis, hip displacement and asymmetric hip abduction in children with cerebral palsy: a cross-sectional registry study. BMC Musculoskelet Disord 2020; 21: 464. doi: 10.1186/s12891-020-03484-y. DOI: https://doi.org/10.1186/s12891-020-03484-y

Patel J, Shapiro F. Simultaneous progression patterns of scoliosis, pelvic obliquity, and hip subluxation/dislocation in non-ambulatory neuromuscular patients: an approach to deformity documentation. J Child Orthop 2015; 9: 345-56. doi: 10.1007/s11832-015-0683-7. DOI: https://doi.org/10.1007/s11832-015-0683-7

Vinje S, Terjesen T, Kibsgård, T. Scoliosis in children with severe cerebral palsy: a population-based study of 206 children at GMFCS levels III-V. European Spine J 2023; Aug 2. doi: 10.1007/s00586-023-07868-1. DOI: https://doi.org/10.1007/s00586-023-07868-1

Willoughby K L, Ang, S G, Thomason P, Rutz E, Shore B, Buckland A J, et al. Epidemiology of scoliosis in cerebral palsy: a population-based study at skeletal maturity. J Paediat Child Health 2022; 58: 295-301. doi: 10.1111/jpc.15707. DOI: https://doi.org/10.1111/jpc.15707

Connelly A, Flett P, Graham H K, Oates J. Hip surveillance in Tasmanian children with cerebral palsy. J Paediatr Child Health 2009; 45: 437-43. doi: 10.1111/j.1440-1754.2009.01534.x. DOI: https://doi.org/10.1111/j.1440-1754.2009.01534.x

Hadad M J, Xu A L, Bryant B R, Andrade N S, Hoon A H, Sponseller P D. Why the hips remain stable when the spine strays: a deeper analysis of the relationship between hip displacement and severe scoliosis in patients with cerebral palsy. J Pediatr Orthop 2021; 41: 261-6. doi: 10.1097/BPO.0000000000001765. DOI: https://doi.org/10.1097/BPO.0000000000001765

Published

2024-01-30

How to Cite

Terjesen, T., Vinje, S., & Kibsgård, T. (2024). The relationship between hip displacement, scoliosis, and pelvic obliquity in 106 nonambulatory children with cerebral palsy: a longitudinal retrospective population-based study. Acta Orthopaedica, 95, 55–60. https://doi.org/10.2340/17453674.2024.39915

Issue

Section

Articles

Categories