CT-based radiostereometric analysis for assessing midfoot kinematics: precision compared with marker-based radiostereometry

Authors

  • Magnus Poulsen Division of Orthopaedic Surgery, Oslo University Hospital Ullevål, Oslo https://orcid.org/0000-0002-9626-7118
  • Are H Stødle Division of Orthopaedic Surgery, Oslo University Hospital Ullevål, Oslo
  • Lars Nordsletten Division of Orthopaedic Surgery, Oslo University Hospital Ullevål, Oslo; Institute of Clinical Medicine, University of Oslo, Norway
  • Stephan M Röhrl Division of Orthopaedic Surgery, Oslo University Hospital Ullevål, Oslo; Institute of Clinical Medicine, University of Oslo, Norway https://orcid.org/0000-0001-5784-2055

DOI:

https://doi.org/10.2340/17453674.2023.16905

Keywords:

CT-based Radiostereometric Analysis, CTMA, Lisfranc joint, Radiostereometric Analysis, Radiostereometry, Tarsometatarsal motion

Abstract

Background and purpose: 3-dimensional midfoot motion is hard to evaluate in clinical practice. We present a new computed tomography (CT)-based radiostereometric analysis (CT-RSA) technique to examine in vivo midfoot kinematics during single-leg stance and compare it with marker-based radiostereometry (RSA).
Patients and methods: 8 patients were examined with bilateral non- and full-weight-bearing CT images of the midfoot. 1st tarsometatarsal motion was analyzed using a surface-registration technique (CT-RSA). As all patients had unilateral tantalum markers in the 1st cuneiform (C1) and 1st metatarsal (M1), comparison of precision with markerbased RSA was performed. CT-RSA precision was evaluated with surface registration of both C1–M1 bone and C1–M1 tantalum markers, while RSA precision was determined with C1–M1 markers only. Additionally, to remove motion bias, we evaluated intrasegmental CT-RSA precision by comparing proximal with distal part of M1.
Results: Under physical load, the primary movement for the 1st tarsometatarsal joint was M1 dorsiflexion (mean 1.4°), adduction (mean 1.4°), and dorsal translation (mean 1.1 mm). CT-RSA precision, using surface bone or markers, was in the range of 0.3–0.7 mm for translation and 0.6–1.6° for rotation. In comparison, RSA precision was in the range of 0.4–0.9 mm for translation and 1.0–1.7° for rotation. Finally, intrasegmental CT-RSA precision was in the range of 0.1–0.2 mm for translation and 0.4–0.5° for rotation.
Conclusion: CT-RSA is a valid and precise, non-invasive method to measure midfoot kinematics when compared with conventional RSA.

Downloads

Download data is not yet available.

References

Nester C J, Jarvis H L, Jones R K, Bowden P D, Liu A. Movement of the human foot in 100 pain free individuals aged 18–45: implications for understanding normal foot function. J Foot Ankle Res 2014; 7: 51. doi: 10.1186/s13047-014-0051-8. DOI: https://doi.org/10.1186/PREACCEPT-1327040147135268

Deschamps K, Staes F, Roosen P, Nobels F, Desloovere K, Bruyninckx H, et al. Body of evidence supporting the clinical use of 3D multisegment foot models: a systematic review. Gait Posture 2011; 33: 338-49. doi: 10.1016/j.gaitpost.2010.12.018. DOI: https://doi.org/10.1016/j.gaitpost.2010.12.018

Kitaoka H B, Crevoisier X M, Hansen D, Katajarvi B, Harbst K, Kaufman K R. Foot and ankle kinematics and ground reaction forces during ambulation. Foot Ankle Int 2006; 27: 808-13. doi: 10.1177/107110070602701010. DOI: https://doi.org/10.1177/107110070602701010

Jastifer J R, Gustafson P A. The subtalar joint: biomechanics and functional representations in the literature. Foot 2014; 24: 203-9. doi: 10.1016/j.foot.2014.06.003. DOI: https://doi.org/10.1016/j.foot.2014.06.003

Schallig W, van den Noort J C, McCahill J, Stebbins J, Leardini A, Maas M, et al. Comparing the kinematic output of the Oxford and Rizzoli Foot Models during normal gait and voluntary pathological gait in healthy adults. Gait Posture 2020; 82: 126-32. doi: 10.1016/j.gaitpost.2020.08.126. DOI: https://doi.org/10.1016/j.gaitpost.2020.08.126

Kärrholm J. Roentgen stereophotogrammetry: review of orthopedic applications. Acta Orthop Scand 1989; 60: 491-503. doi: 10.3109/17453678909149328. DOI: https://doi.org/10.3109/17453678909149328

Kibsgård T J, Røise O, Stuge B, Röhrl S M. Precision and accuracy measurement of radiostereometric analysis applied to movement of the sacroiliac joint. Clin Orthop Relat Res 2012; 470(11): 3187-94. doi: 10.1007/s11999-012-2413-5. DOI: https://doi.org/10.1007/s11999-012-2413-5

Beumer A, Valstar E, Garling E, Niesing R, Ranstam J, Löfvenberg R, et al. Kinematics of the distal tibiofibular syndesmosis. Acta Orthop Scand 2003; 74: 337-43. doi: 10.1080/00016470310014283. DOI: https://doi.org/10.1080/00016470310014283

Martinkevich P, Rahbek O, Møller-Madsen B, Stilling M. Calcaneal cuboid joint motion and osteotomy stability in children one year after calcaneal lengthening osteotomy. J Orthop 2020; 22: 565-70. doi: 10.1016/j.jor.2020.11.001. DOI: https://doi.org/10.1016/j.jor.2020.11.001

Poulsen M, Stødle A H, Nordsletten L, Röhrl S M. Does temporary bridge plate fixation preserve joint motion after an unstable Lisfranc injury? Foot Ankle Surg 2023; 29: 151-7. doi: 10.1016/j.fas.2022.12.007. DOI: https://doi.org/10.1016/j.fas.2022.12.007

Humadi A, Dawood S, Halldin K, Freeman B. RSA in spine: a review. Global Spine J 2017; 7: 811-20. doi: 10.1177/2192568217701722. DOI: https://doi.org/10.1177/2192568217701722

Eriksson T, Maguire G Q, Noz M E, Zeleznik M P, Olivecrona H, Shalabi A, et al. Are low-dose CT scans a satisfactory substitute for stereoradiographs for migration studies? A preclinical test of low-dose CT scanning protocols and their application in a pilot patient. Acta Radiol 2019; 60: 1643-52. doi: 10.1177/0284185119844166. DOI: https://doi.org/10.1177/0284185119844166

Brodén C, Sandberg O, Olivecrona H, Emery R, Sköldenberg O. Precision of CT-based micromotion analysis is comparable to radiostereometry for early migration measurements in cemented acetabular cups. Acta Orthop 2021; 92: 419-23. doi: 10.1080/17453674.2021.1906082. DOI: https://doi.org/10.1080/17453674.2021.1906082

Brodén C, Sandberg O, Sköldenberg O, Stigbrand H, Hänni M, Giles J W, et al. Low-dose CT-based implant motion analysis is a precise tool for early migration measurements of hip cups: a clinical study of 24 patients. Acta Orthop 2020; 91: 260-5. doi: 10.1080/17453674.2020.1725345. DOI: https://doi.org/10.1080/17453674.2020.1725345

Brodén C, Giles J W, Popat R, Fetherston S, Olivecrona H, Sandberg O, et al. Accuracy and precision of a CT method for assessing migration in shoulder arthroplasty: an experimental study. Acta Radiol 2020; 61: 776-82. doi: 10.1177/0284185119882659. DOI: https://doi.org/10.1177/0284185119882659

Angelomenos V, Mohaddes M, Itayem R, Shareghi B. Precision of low-dose CT-based micromotion analysis technique for the assessment of early acetabular cup migration compared with gold standard RSA: a prospective study of 30 patients up to 1 year. Acta Orthop 2022; 93: 459-65. doi: 10.2340/17453674.2022.2528. DOI: https://doi.org/10.2340/17453674.2022.2528

Stødle A H, Nilsen F, Molund M, Ellingsen Husebye E, Hvaal K. Open reduction and internal fixation of acute Lisfranc fracture-dislocation with use of dorsal bridging plates. JBJS Essent Surg Tech 2019; 9: e39. doi: 10.2106/jbjs.st.19.00009. DOI: https://doi.org/10.2106/JBJS.ST.19.00009

Valstar E R, Gill R, Ryd L, Flivik G, Börlin N, Kärrholm J. Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 2005; 76: 563-72. doi: 10.1080/17453670510041574. DOI: https://doi.org/10.1080/17453670510041574

Posadzy M, Desimpel J, Vanhoenacker F. Cone beam CT of the musculoskeletal system: clinical applications. Insights Imaging 2018; 9: 35-45. doi: 10.1007/s13244-017-0582-1. DOI: https://doi.org/10.1007/s13244-017-0582-1

Tuominen E K J, Kankare J, Koskinen S K, Mattila K T. Weight-bearing CT imaging of the lower extremity. AJR Am J Roentgenol 2013; 200: 146-8. doi: 10.2214/AJR.12.8481. DOI: https://doi.org/10.2214/AJR.12.8481

Koivisto J, Kiljunen T, Kadesjö N, Shi X-Q, Wolff J. Effective radiation dose of a MSCT, two CBCT and one conventional radiography device in the ankle region. J Foot Ankle Res 2015; 8: 8. doi: 10.1186/s13047-015-0067-8. DOI: https://doi.org/10.1186/s13047-015-0067-8

Sköldenberg O, Eisler T, Stark A, Muren O, Martinez-Carranza N, Ryd L. Measurement of the migration of a focal knee resurfacing implant with radiostereometry. Acta Orthop 2014; 85: 79-83. doi: 10.3109/17453674.2013.869654. DOI: https://doi.org/10.3109/17453674.2013.869654

Niesen A E, Hull M L. Measurement error versus repeated measurements: a guide describing two methods for computing bias and precision of migration measurements from double examinations using radiostereometric analysis. J Biomech Eng 2022; 144(6): 061011 doi: 10.1115/1.4054375. DOI: https://doi.org/10.1115/1.4054375

Bragdon C R, Malchau H, Yuan X, Perinchief R, Kärrholm J, Börlin N, et al. Experimental assessment of precision and accuracy of radiostereometric analysis for the determination of polyethylene wear in a total hip replacement model. J Orthop Res 2002; 20: 688-95. doi: 10.1016/S0736-0266(01)00171-1. DOI: https://doi.org/10.1016/S0736-0266(01)00171-1

Martinkevich P, Rahbek O, Møller-Madsen B, Søballe K, Stilling M. Precise and feasible measurements of lateral calcaneal lengthening osteotomies by radiostereometric analysis in cadaver feet. Bone Joint Res 2015; 4(5): 78-83. doi: 10.1302/2046-3758.45.2000292. DOI: https://doi.org/10.1302/2046-3758.45.2000292

Ye D, Sun X, Zhang C, Zhang S, Zhang X, Wang S, et al. In vivo foot and ankle kinematics during activities measured by using a dual fluoroscopic imaging system: a narrative review. Front Bioeng Biotechnol 2021; 9: 693806. doi: 10.3389/fbioe.2021.693806. DOI: https://doi.org/10.3389/fbioe.2021.693806

Sheehan F T, Seisler A R, Siegel K L. In vivo talocrural and subtalar kinematics: a non-invasive 3D dynamic MRI study. Foot Ankle Int 2007; 28: 323-35. doi: 10.3113/FAI.2007.0323. DOI: https://doi.org/10.3113/FAI.2007.0323

Lundgren P, Nester C, Liu A, Arndt A, Jones R, Stacoff A, et al. Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture 2008; 28: 93-100. doi: 10.1016/j.gaitpost.2007.10.009. DOI: https://doi.org/10.1016/j.gaitpost.2007.10.009

Whittaker E C, Aubin P M, Ledoux W R. Foot bone kinematics as measured in a cadaveric robotic gait simulator. Gait Posture 2011; 33: 645-50. doi: 10.1016/j.gaitpost.2011.02.011. DOI: https://doi.org/10.1016/j.gaitpost.2011.02.011

Published

2023-07-20

How to Cite

Poulsen, M., Stødle, A. H., Nordsletten, L., & Röhrl, S. M. (2023). CT-based radiostereometric analysis for assessing midfoot kinematics: precision compared with marker-based radiostereometry. Acta Orthopaedica, 94, 366–372. https://doi.org/10.2340/17453674.2023.16905

Issue

Section

Articles

Categories