No difference in the use of revision components and rerevision rate in conversion to total knee replacement following Oxford Partial Knee Microplasty Instrumentation: a registry study of 529 conversions
DOI:
https://doi.org/10.2340/17453674.2023.15310Keywords:
Conversion, Microplasty Instrumentation, Partial Knee Replacement, Revision ComponentsAbstract
Background and purpose: Microplasty Instrumentation was introduced to improve Oxford Mobile Partial Knee placement and preserve tibial bone in partial knee replacement (PKR). This might therefore reduce revision complexity. We aimed to assess the difference in use of revision total knee replacement (TKR) tibial components in failed Microplasty versus non-Microplasty instrumented PKRs.
Patients and methods: Data on 529 conversions to TKR (156 Microplasty instrumented and 373 non-Microplasty instrumented PKRs) from the Dutch Arthroplasty Register (LROI) between 2007 and 2019 was used. The primary outcome was the difference in use of revision TKR tibial components during conversion to TKR, which was calculated with a univariable logistic regression analysis. The secondary outcomes were the 3-year re-revision rate and hazard ratios calculated with Kaplan–Meier and Cox regression analyses.
Results: Revision TKR tibial components were used in 29% of the conversions to TKR after failed Microplasty instrumented PKRs and in 24% after failed non-Microplasty instrumented PKRs with an odds ratio of 1.3 (CI 0.86–2.0). The 3-year re-revision rates were 8.4% (CI 4.1–17) after conversion to TKR for failed Microplasty and 11% (CI 7.8–15) for failed non-Microplasty instrumented PKRs with a hazard ratio of 0.77 (CI 0.36–1.7).
Conclusion: There was no difference in use of revision tibial components for conversion to TKR or in re-revision rate after failed Microplasty versus non-Microplasty instrumented PKRs nor in the 3-year revision rate.
Downloads
References
Beard D J, Davies L J, Cook J A, MacLennan G, Price A, Kent S, et al. The clinical and cost-effectiveness of total versus partial knee replacement in patients with medial compartment osteoarthritis (TOPKAT): 5-year outcomes of a randomised controlled trial. Lancet (London, England) 2019; 394: 746-56. doi: 10.1016/S0140-6736(19)31281-4. DOI: https://doi.org/10.1016/S0140-6736(19)31281-4
Wilson H A, Middleton R, Abram S G F, Smith S, Alvand A, Jackson W F, et al. Patient relevant outcomes of unicompartmental versus total knee replacement: systematic review and meta-analysis. BMJ 2019; 364: l352. doi: 10.1136/bmj.l352. DOI: https://doi.org/10.1136/bmj.l352
Murray D W, Liddle A D, Dodd C A, Pandit H. Unicompartmental knee arthroplasty: is the glass half full or half empty? Bone Joint J 2015; 97-B: 3-8. doi: 10.1302/0301-620X.97B10.36542. DOI: https://doi.org/10.1302/0301-620X.97B10.36542
Kim S J, Postigo R, Koo S, Kim J H. Causes of revision following Oxford phase 3 unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2014; 22: 1895-1901. doi: 10.1007/s00167-013-2644-3. DOI: https://doi.org/10.1007/s00167-013-2644-3
Vasso M, Corona K, D’Apolito R, Mazzitelli G, Panni A S. Unicompartmental knee arthroplasty: modes of failure and conversion to total knee arthroplasty. Joints 2017; 5: 44-50. doi: 10.1055/s-0037-1601414. DOI: https://doi.org/10.1055/s-0037-1601414
Craik J D, El Shafie S A, Singh V K, Twyman R S. Revision of unicompartmental knee arthroplasty versus primary total knee arthroplasty. J Arthroplasty 2015; 30: 592-4. doi: 10.1016/j.arth.2014.10.038. DOI: https://doi.org/10.1016/j.arth.2014.10.038
Sun X, Su Z. A meta-analysis of unicompartmental knee arthroplasty revised to total knee arthroplasty versus primary total knee arthroplasty. J Orthop Surg Res 2018; 13: 158. doi: 10.1186/s13018-018-0859-1. DOI: https://doi.org/10.1186/s13018-018-0859-1
Morris M J, Frye B M, Ekpo T E, Berend K R. Unicompartmental knee replacement with New Oxford instruments. Operative Tech Orthop 2012; 22: 189-95. doi: 10.1053/j.oto.2012.11.003. DOI: https://doi.org/10.1053/j.oto.2012.11.003
Berend K, Hurst J, Morris M, Adams J, Lombardi A. New instrumentation reduces operative time in medial unicompartmental knee arthroplasty using the Oxford mobile bearing design. Reconstructive Rev 2015; 5. doi: 10.15438/rr.5.4.126. DOI: https://doi.org/10.15438/rr.5.4.126
Hurst J M, Berend K R, Adams J B, Lombardi A V Jr. Radiographic comparison of mobile-bearing partial knee single-peg versus twin-peg design. J Arthroplasty 2015; 30: 475-8. doi: 10.1016/j.arth.2014.10.015. DOI: https://doi.org/10.1016/j.arth.2014.10.015
Koh I J, Kim J H, Jang S W, Kim M S, Kim C, In Y. Are the Oxford((R)) medial unicompartmental knee arthroplasty new instruments reducing the bearing dislocation risk while improving components relationships? A case control study. Orthop Traumatol Surg Res 2016; 102: 183-7. doi: 10.1016/j.otsr.2015.11.015. DOI: https://doi.org/10.1016/j.otsr.2015.11.015
Tu Y, Xue H, Ma T, Wen T, Yang T, Zhang H, et al. Superior femoral component alignment can be achieved with Oxford microplasty instrumentation after minimally invasive unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2017; 25: 729-35. doi: 10.1007/s00167-016-4173-3. DOI: https://doi.org/10.1007/s00167-016-4173-3
Mohammad H R, Matharu G S, Judge A, Murray D W. New surgical instrumentation reduces the revision rate of unicompartmental knee replacement: a propensity score matched comparison of 15,906 knees from the National Joint Registry. Knee 2020; 27: 993-1002. doi: 10.1016/j.knee.2020.02.008. DOI: https://doi.org/10.1016/j.knee.2020.02.008
Walker T, Heinemann P, Bruckner T, Streit M R, Kinkel S, Gotterbarm T. The influence of different sets of surgical instrumentation in Oxford UKA on bearing size and component position. Arch Orthop Trauma Surg 2017; 137: 895-902. doi: 10.1007/s00402-017-2702-2. DOI: https://doi.org/10.1007/s00402-017-2702-2
Gaba S, Wahal N, Gautam D, Pandit H, Kumar V, Malhotra R. Early results of Oxford mobile bearing medial unicompartmental knee replacement (UKR) with the Microplasty instrumentation: an Indian experience. Arch Bone Jt Surg 2018; 6: 301-11. https://www.ncbi.nlm.nih.gov/pubmed/30175178.
Berend M E, Davis P J, Ritter M A, Keating E M, Faris P M, Meding J B, et al. “Thicker” polyethylene bearings are associated with higher failure rates in primary total knee arthroplasty. J Arthroplasty 2010; 25: 17-20. doi: 10.1016/j.arth.2010.04.031. DOI: https://doi.org/10.1016/j.arth.2010.04.031
Hernán M A, Hernández-Díaz S, Werler M M, Mitchell A A. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol 2002; 155: 176-84. doi: 10.1093/aje/155.2.176. DOI: https://doi.org/10.1093/aje/155.2.176
Springer B D, Scott R D, Thornhill T S. Conversion of failed unicompartmental knee arthroplasty to TKA. Clin Orthop Relat Res 2006; 446: 214-20. doi: 10.1097/01.blo.0000214431.19033.fa. DOI: https://doi.org/10.1097/01.blo.0000214431.19033.fa
Saragaglia D, Estour G, Nemer C, Colle P E. Revision of 33 unicompartmental knee prostheses using total knee arthroplasty: strategy and results. Int Orthop 2009; 33: 969-74. doi: 10.1007/s00264-008-0585-0. DOI: https://doi.org/10.1007/s00264-008-0585-0
Khan Z, Nawaz S Z, Kahane S, Esler C, Chatterji U. Conversion of unicompartmental knee arthroplasty to total knee arthroplasty: the challenges and need for augments. Acta Orthop Belgica 2013; 79: 699-705. https://www.ncbi.nlm.nih.gov/pubmed/24563977.
Sierra R J, Kassel C A, Wetters N G, Berend K R, Della Valle C J, Lombardi A V. Revision of unicompartmental arthroplasty to total knee arthroplasty: not always a slam dunk! J Arthroplasty 2013; 28: 128-32. doi: 10.1016/j.arth.2013.02.040. DOI: https://doi.org/10.1016/j.arth.2013.02.040
Wynn Jones H, Chan W, Harrison T, Smith T O, Masonda P, Walton N P. Revision of medial Oxford unicompartmental knee replacement to a total knee replacement: similar to a primary? Knee 2012; 19: 339-43. doi: 10.1016/j.knee.2011.03.006. DOI: https://doi.org/10.1016/j.knee.2011.03.006
Schwarzkopf R, Mikhael B, Li L, Josephs L, Scott R D. Effect of initial tibial resection thickness on outcomes of revision UKA. Orthopedics 2013; 36: e409-14. doi: 10.3928/01477447-20130327-14. DOI: https://doi.org/10.3928/01477447-20130327-14
Lewis P L, Davidson D C, Graves S E, de Steiger R N, Donnelly W, Cuthbert A. Unicompartmental knee arthroplasty revision to TKA: are tibial stems and augments associated with improved survivorship? Clin Orthop Relat Res 2018; 476: 854-62. doi: 10.1007/s11999.0000000000000179. DOI: https://doi.org/10.1007/s11999.0000000000000179
Rawlinson J J, Closkey R F Jr, Davis N, Wright T M, Windsor R. Stemmed implants improve stability in augmented constrained condylar knees. Clin Orthop Relat Res 2008; 466: 2639-43. doi: 10.1007/s11999-008-0424-z. DOI: https://doi.org/10.1007/s11999-008-0424-z
Hashemi A, Ziada S, Adili A, de Beer J. Stem requirements of tibial augmentations in total knee arthroplasty. Experimental Techniques 2014; 38: 8-17. doi: 10.1111/j.1747-1567.2012.00826.x. DOI: https://doi.org/10.1111/j.1747-1567.2012.00826.x
Additional Files
Published
How to Cite
License
Copyright (c) 2023 Stephan J van Langeveld , Stein J Janssen, Koen L M Koenraadt, Joost A A M van den Hout, Liza N van Steenbergen, Rutger C I van Geenen
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.