Change in CT-measured acetabular bone density following total hip arthroplasty: a systematic review and meta-analysis

Authors

  • Thomas S Robertson Department of Orthopaedics and Trauma Royal Adelaide Hospital, Adelaide, SA, Australia; Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
  • Bart G Pijls Department of Orthopaedics, Leiden University Medical Center, Leiden, Netherlands https://orcid.org/0000-0001-5351-5057
  • Zachary Munn JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA Australia
  • L Bogdan Solomon Department of Orthopaedics and Trauma Royal Adelaide Hospital, Adelaide, SA, Australia; Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
  • Rob G H H Nelissen Department of Orthopaedics, Leiden University Medical Center, Leiden, Netherlands https://orcid.org/0000-0003-1228-4162
  • Stuart A Callary Department of Orthopaedics and Trauma Royal Adelaide Hospital, Adelaide, SA, Australia; Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia https://orcid.org/0000-0002-2892-5238

DOI:

https://doi.org/10.2340/17453674.2023.11635

Keywords:

Arthroplasty, Biomechanics, Bone

Abstract

Background and purpose: Assessing peri-acetabular bone quality is valuable for optimizing the outcomes of primary total hip arthroplasty (THA) as preservation of good quality bone stock likely affects implant stability. The aim of this study was to perform a meta-analysis of peri-acetabular bone mineral density (BMD) changes over time measured using quantitative computer tomography (CT) and, second, to investigate the influence of age, sex, and fixation on the change in BMD over time.
Methods: A systematic search of Embase, Scopus, Web of Science, and PubMed databases identified 19 studies that measured BMD using CT following THA. The regions of interest (ROI), reporting of BMD results, and scan protocols were extracted. A meta-analysis of BMD was performed on 12 studies that reported measurements immediately postoperatively and at follow-up.
Results: The meta-analysis determined that periacetabular BMD around both cemented and uncemented components decreases over time. The amount of BMD loss increased relative to proximity of the acetabular component. There was a greater decrease in cortical BMD over time in females and cancellous BMD for young patients of any sex.
Conclusion: Peri-acetabular BMD decreases at different rates relative to its proximity to the acetabular component. Cancellous BMD decreases more in young patients and cortical bone decreases more in females. Standardized reporting parameters and suggested ROI to measure peri-acetabular BMD are proposed, to enable comparison between implant and patient variables in the future.

Downloads

Download data is not yet available.

References

Ries M D, Scott M L, Jani S. Relationship between gravimetric wear and particle generation in hip simulators: conventional compared with cross-linked polyethylene. J Bone Joint Surg Am 2001; 83-A(Suppl. 2, Pt 2): 116-22. doi: 10.2106/00004623-200100022-00009. DOI: https://doi.org/10.2106/00004623-200100022-00009

AOANJRR. Australian Orthopaedics Association National Joint Replacement Registry Annual Report. Adelaide: AOA; 2020.

Maier G S, Kolbow K, Lazovic D, Maus U. The importance of bone mineral density in hip arthroplasty: results of a survey asking orthopaedic surgeons about their opinions and attitudes concerning osteoporosis and hip arthroplasty. Adv Orthop 2016; 2016: 8079354. doi: 10.1155/2016/8079354. DOI: https://doi.org/10.1155/2016/8079354

Mueller L A, Nowak T E, Mueller L P, Schmidt R, Ehrmann C, Pitto R P, et al. Acetabular cortical and cancellous bone density and radiolucent lines after cemented total hip arthroplasty: a prospective study using computed tomography and plain radiography. Arch Orthop Trauma Surg 2007; 127(10): 909-17. doi: 10.1007/s00402-007-0304-0. DOI: https://doi.org/10.1007/s00402-007-0304-0

Smolders J M, Pakvis D F, Hendrickx B W, Verdonschot N, van Susante J L. Periacetabular bone mineral density changes after resurfacing hip arthroplasty versus conventional total hip arthroplasty: a randomized controlled DEXA study. J Arthroplasty 2013; 28(7): 1177-84. doi: 10.1016/j.arth.2012.08.025. DOI: https://doi.org/10.1016/j.arth.2012.08.025

Mueller L A, Voelk M, Kress A, Pitto R P, Schmidt R. An ABJS Best Paper: Progressive cancellous and cortical bone remodelling after press-fit cup fixation: a 3-year followup. Clin Orthop Relat Res 2007; 463: 213-20. DOI: https://doi.org/10.1097/BLO.0b013e318156e5ce

DeLee J G, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res 1976; 121: 20-32. DOI: https://doi.org/10.1097/00003086-197611000-00003

Wilkinson J M, Peel NF, Elson RA, Stockley I, Eastell R. Measuring bone mineral density of the pelvis and proximal femur after total hip arthroplasty. J Bone Joint Surg Br 2001; 83(2): 283-8. doi: 10.1302/0301-620x.83b2.10562. DOI: https://doi.org/10.1302/0301-620X.83B2.0830283

Field R E, Cronin M D, Singh P J, Burtenshaw C, Rushton N. Bone remodeling around the Cambridge cup: a DEXA study of 50 hips over 2 years. Acta Orthop 2006; 77(5): 726-32. doi: 10.1080/17453670610012908. DOI: https://doi.org/10.1080/17453670610012908

Laursen M B, Nielsen P T, Soballe K. Bone remodelling around HA-coated acetabular cups: a DEXA study with a 3-year follow-up in a randomised trial. Int Orthop 2007; 31(2): 199-204. doi: 10.1007/s00264-006-0148-1. DOI: https://doi.org/10.1007/s00264-006-0148-1

Pitto R P, Bhargava A, Pandit S, Munro J T. Retroacetabular stress-shielding in THA. Clin Orthop Relat Res 2008; 466(2): 353-8. doi: 10.1007/s11999-007-0043-0. DOI: https://doi.org/10.1007/s11999-007-0043-0

Zingler K, Haeberle L, Kress A, Holzwarth U, Forst R, Mueller L A, et al. Comparison of cortical and cancellous bone remodeling of the pelvis after press-fit cup total hip arthroplasty dependent on patient and prosthesis-specific characteristics: a computed tomography-assisted osteodensitometry study in vivo. Biomed Tech (Berl) 2011; 56(5): 267-75. doi: 10.1515/BMT.2011.105. DOI: https://doi.org/10.1515/BMT.2011.105

Manley M T, Ong K L, Kurtz S M. The potential for bone loss in acetabular structures following THA. Clin Orthop Relat Res 2006; 453: 246-53. doi: 10.1097/01.blo.0000238855.54239.fd. DOI: https://doi.org/10.1097/01.blo.0000238855.54239.fd

Dickinson A S, Taylor A C, Browne M. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. J Biomech 2012; 45(4): 719-23. doi: 10.1016/j.jbio-mech.2011.11.042. DOI: https://doi.org/10.1016/j.jbiomech.2011.11.042

Small S R, Berend M E, Howard L A, Tunc D, Buckley C A, Ritter M A. Acetabular cup stiffness and implant orientation change acetabular loading patterns. J Arthroplast. 2013; 28(2): 359-67. doi: 10.1016/j.arth.2012.05.026. DOI: https://doi.org/10.1016/j.arth.2012.05.026

Bahl J S, Millar S C, Fraysse F, Arnold J B, Taylor M, Callary S, et al. Changes in 24-hour physical activity patterns and walking gait biomechanics after primary total hip arthroplasty: a 2-year follow-upstudy. J Bone Joint Surg Am 2021; 103(13): 1166-74. doi:10.2106/JBJS.20.01679. DOI: https://doi.org/10.2106/JBJS.20.01679

Digas G, Kärrholm J, Thanner J. Different loss of BMD using uncemented press-fit and whole polyethylene cups fixed with cement: repeated DXA studies in 96 hips randomized to 3 types of fixation. Acta Orthop 2006; 77(2): 218-26. doi: 10.1080/17453670610045948. DOI: https://doi.org/10.1080/17453670610045948

Kim Y J, Cha J G, Kim H, Yi J S, Kim H J. Dual-energy and iterative metal artifact reduction for reducing artifacts due to metallic hardware: a loosening hip phantom study. AJR Am J Roentgenol 2019: 1-6. doi: 10.2214/AJR.18.20413. DOI: https://doi.org/10.2214/AJR.18.20413

Hakvoort E T, Wellenberg R H H, Streekstra G J. Quantifying near metal visibility using dual energy computed tomography and iterative metal artifact reduction in a fracture phantom. Phys Med 2020; 69: 9-18. doi: 10.1016/j.ejmp.2019.11.006. DOI: https://doi.org/10.1016/j.ejmp.2019.11.006

Mussmann B, Andersen P E, Torfing T, Overgaard S. Bone density measurements adjacent to acetabular cups in total hip arthroplasty using dual-energy CT: an in vivo reliability and agreement study. Acta Radiol Open 2018; 7(9): 2058460118796539. doi: 10.1177/2058460118796539. DOI: https://doi.org/10.1177/2058460118796539

Wright J M, Pellicci P M, Salvati E A, Ghelman B, Roberts M M, Koh J L. Bone density adjacent to press-fit acetabular components: a prospective analysis with quantitative computed tomography. J Bone Joint Surg Am 2001; 83-A(4): 529-36. DOI: https://doi.org/10.2106/00004623-200104000-00007

Schmidt R, Pitto R P, Kress A, Ehremann C, Nowak T E, Reulbach U, et al. Inter- and intraobserver assessment of periacetabular osteodensitometry after cemented and uncemented total hip arthroplasty using computed tomography. Arch Orthop Trauma Surg 2005; 125(5): 291-7. doi: 10.1007/s00402-005-0812-8. DOI: https://doi.org/10.1007/s00402-005-0812-8

Drevon D, Fursa S R, Malcolm A L. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif 2017; 41(2): 323-39. doi: 10.1177/0145445516673998. DOI: https://doi.org/10.1177/0145445516673998

Hozo S P, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005; 5: 13. doi: 10.1186/1471-2288-5-13. DOI: https://doi.org/10.1186/1471-2288-5-13

Higgins J P T, Thomas J, Chandler J, Li T, Page M J, Welch V A. Cochrane handbook for systematic reviews of interventions. 6th ed. Chichester, UK, Hoboken, NJ: Wiley-Blackwell; 2019. xxi, p. 649. DOI: https://doi.org/10.1002/9781119536604

Knowles N K, Reeves J M, Ferreira L M. Quantitative computed tomography (QCT) derived bone mineral density (BMD) in finite element studies: a review of the literature. J Exp Orthop 2016; 3(1): 36. doi: 10.1186/s40634-016-0072-2. DOI: https://doi.org/10.1186/s40634-016-0072-2

Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Software 2010; 36: 1-48. DOI: https://doi.org/10.18637/jss.v036.i03

Stepniewski A S, Egawa H, Sychterz-Terefenko C, Leung S, Engh C A, Sr. Periacetabular bone density after total hip arthroplasty: a postmortem analysis. J Arthroplasty 2008; 23(4): 593-9. doi: 10.1016/j.arth.2007.05.030. DOI: https://doi.org/10.1016/j.arth.2007.05.030

Wodzislawski W, Krupa S, Nowicki J, Bedzinski R, Detyna J. The reaction of the pelvis to the implantation of the acetabular component of the hip endoprosthesis: initial tests with the use of computerized tomography. Acta Bioeng Biomech 2009; 11(4): 45-54.

Boomsma M F, Slouwerhof I, van Lingen C, Pakvis D F, van Dalen J A, Edens M A, et al. CT-based quantification of bone stock in large head metal-on-metal unilateral total hip replacements. Eur J Radiol 2016; 85(4): 760-3. doi: 10.1016/j.ejrad.2016.01.019. DOI: https://doi.org/10.1016/j.ejrad.2016.01.019

Müller L, Schmidt R, Kress A, Forst R, Pitto R. Evaluation of periacetabular bone reaction after total hip arthroplasty with alumina–alumina pairing using computed tomography. Key Engineering Materials 2003; 240-242: 863-6. doi: 10.4028/www.scientific.net/KEM.240-242.863. DOI: https://doi.org/10.4028/www.scientific.net/KEM.240-242.863

Meneghini R M, Ford K S, McCollough C H, Hanssen A D, Lewallen D G. Bone remodeling around porous metal cementless acetabular components. J Arthroplasty 2010; 25(5): 741-7. doi: 10.1016/j.arth.2009.04.025. DOI: https://doi.org/10.1016/j.arth.2009.04.025

Schmidt R, Muller L, Kress A, Hirschfelder H, Aplas A, Pitto R P. A computed tomography assessment of femoral and acetabular bone changes after total hip arthroplasty. Int Orthop 2002; 26(5): 299-302. doi: 10.1007/s00264-002-0377-x. DOI: https://doi.org/10.1007/s00264-002-0377-x

Mueller L A, Kress A, Nowak T, Pfander D, Pitto R P, Forst R, et al. Periacetabular bone changes after uncemented total hip arthroplasty evaluated by quantitative computed tomography. Acta Orthop 2006; 77(3): 380-5. doi: 10.1080/17453670610046299. DOI: https://doi.org/10.1080/17453670610046299

Kress A M, Schmidt R, Vogel T, Nowak T E, Forst R, Mueller L A. Quantitative computed tomography-assisted osteodensitometry of the pelvis after press-fit cup fixation: a prospective ten-year follow-up. J Bone Joint Surg Am 2011; 93(12): 1152-7. doi: 10.2106/JBJS.J.01097. DOI: https://doi.org/10.2106/JBJS.J.01097

Schmidt R, Kress A M, Nowak M, Forst R, Nowak T E, Mueller L A. Periacetabular cortical and cancellous bone mineral density loss after press-fit cup fixation: a prospective 7-year follow-up. J Arthroplasty 2012; 27(7): 1358-63 e1. doi: 10.1016/j.arth.2011.09.031. DOI: https://doi.org/10.1016/j.arth.2011.09.031

Mueller L A, Schmidt R, Ehrmann C, Nowak T E, Kress A, Forst R, et al. Modes of periacetabular load transfer to cortical and cancellous bone after cemented versus uncemented total hip arthroplasty: a prospective study using computed tomography-assisted osteodensitometry. J Orthop Res 2009; 27(2): 176-82. doi: 10.1002/jor.20742. DOI: https://doi.org/10.1002/jor.20742

Pakvis D F, Heesterbeek P J, Severens M, Spruit M. Cancellous and cortical bone mineral density around an elastic press-fit socket in total hip arthroplasty. Acta Orthop 2016; 87(6): 583-8. doi: 10.1080/17453674.2016.1237439. DOI: https://doi.org/10.1080/17453674.2016.1237439

Barbu-McInnis M, Tamez-Pena J, Crilly T, Looney J, O’Keefe R, Campbell D, et al. Semi-automated CT-based analysis of regional bone-density in contralateral total hip replacement: Proceedings of SPIE 2004; 5369: 742-9. doi: 10.1117/12.535815. DOI: https://doi.org/10.1117/12.535815

Pijls B G, Nieuwenhuijse M J, Fiocco M, Plevier J W, Middeldorp S, Nelissen R G, et al. Early proximal migration of cups is associated with late revision in THA: a systematic review and meta-analysis of 26 RSA studies and 49 survival studies. Acta Orthop 2012; 83(6): 583-91. doi: 10.3109/17453674.2012.745353. DOI: https://doi.org/10.3109/17453674.2012.745353

Fernandez J, Sartori M, Lloyd D, Munro J, Shim V. Bone remodelling in the natural acetabulum is influenced by muscle force-induced bone stress. Int J Numer Method Biomed Eng 2014; 30(1): 28-41. doi: 10.1002/cnm.2586. DOI: https://doi.org/10.1002/cnm.2586

Goodman S B, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med 2019; 8(12): 2091. doi: 10.3390/jcm8122091. DOI: https://doi.org/10.3390/jcm8122091

Carter D R, Vasu R, Harris W H. Stress distributions in the acetabular region, II: Effects of cement thickness and metal backing of the total hip acetabular component. J Biomech 1982; 15(3): 165-70. doi: 10.1016/0021-9290(82)90248-2. DOI: https://doi.org/10.1016/0021-9290(82)90248-2

Carter D R, Vasu R, Harris W H. Periacetabular stress distributions after joint replacement with subchondral bone retention. Acta Orthop Scand 1983; 54(1): 29-35. doi: 10.3109/17453678308992866. DOI: https://doi.org/10.3109/17453678308992866

Pedersen D R, Crowninshield R D, Brand R A, Johnston R C. An axisymmetric model of acetabular components in total hip arthroplasty. J Biomech 1982; 15(4): 305-15. doi: 10.1016/0021-9290(82)90176-2. DOI: https://doi.org/10.1016/0021-9290(82)90176-2

Published

2023-04-27

How to Cite

Robertson, T. S., Pijls, B. G., Munn, Z., Solomon, L. B., Nelissen, R. G. H. H., & Callary, S. A. (2023). Change in CT-measured acetabular bone density following total hip arthroplasty: a systematic review and meta-analysis. Acta Orthopaedica, 94, 191–199. https://doi.org/10.2340/17453674.2023.11635

Issue

Section

Articles

Categories