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Ankle fracture classification using deep learning: automating detailed 
AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 
malleolar fracture identification reaches a high degree of correct 
classification
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Ankle fractures are recognized among the most common frac-
tures, with peak incidence between 15 and 29 years (67 per 
100,000 person-years) and elderly women ≥ 60 years (174 per 
100,000 person-years) (Westerman and Porter 2007, Thur et 
al. 2012). Efforts to classify ankle fractures in clinically rel-
evant entities have a long history, ending in 3 classic systems, 
i.e., the Lauge-Hansen (Hansen 1942), Danis–Weber, and the 
AO/OTA classifications (Association Committee for Coding 
and Classification 1996; Budny and Young 2008), where the 
Danis–Weber with its A, B, and C classes is probably the most 
used in everyday practice.

The most recent update for the AO/OTA classification 
system was published in 2018 (Meinberg et al. 2018). The 
AO/OTA system contains classifications for the entire body. 
The ankle is divided into (1) malleolar, (2) distal tibia, and 
(3) fibular fractures. For malleolar fractures, the subcategories 
correspond to the Danis–Weber ABC classification (Hughes et 
al. 1979) with the addition of a suffix of 2 digits (range 1–3), 
e.g., the common intra-syndesmotic B-injury without widen-
ing of the mortise corresponds to the B1.1 class. The numbers 
correspond roughly to the severity of each fracture.

The complexity of this classification makes it difficult to 
learn and apply, limiting inter-observer reliability and repro-
ducibility (Fonseca et al. 2017). This has hindered its use in 
an everyday clinical setting, suggesting the need for better aid 
during the classification. 

During recent years, the resurgence of neural networks, a 
form of artificial intelligence (AI), has proven highly success-
ful for image classification. In some medical image classifica-
tion applications neural networks attain (Olczak et al. 2017, 
Kim and MacKinnon 2018, Gan et al. 2019), and surpass, 
human expert performance (Esteva et al. 2017, Lee et al. 2017, 

Background and purpose — Classification of ankle 
fractures is crucial for guiding treatment but advanced clas-
sifications such as the AO Foundation/Orthopedic Trauma 
Association (AO/OTA) are often too complex for human 
observers to learn and use. We have therefore investigated 
whether an automated algorithm that uses deep learning can 
learn to classify radiographs according to the new AO/OTA 
2018 standards.

Method — We trained a neural network based on the 
ResNet architecture on 4,941 radiographic ankle examina-
tions. All images were classified according to the AO/OTA 
2018 classification. A senior orthopedic surgeon (MG) then 
re-evaluated all images with fractures. We evaluated the net-
work against a test set of 400 patients reviewed by 2 expert 
observers (MG, AS) independently.

Results — In the training dataset, about half of the exam-
inations contained fractures. The majority of the fractures 
were malleolar, of which the type B injuries represented 
almost 60% of the cases. Average area under the area under 
the receiver operating characteristic curve (AUC) was 0.90 
(95% CI 0.82–0.94) for correctly classifying AO/OTA class 
where the most common major fractures, the malleolar type 
B fractures, reached an AUC of 0.93 (CI 0.90–0.95). The 
poorest performing type was malleolar A fractures, which 
included avulsions of the fibular tip.

Interpretation — We found that a neural network could 
attain the required performance to aid with a detailed ankle 
fracture classification. This approach could be scaled up to 
other body parts. As the type of fracture is an important part 
of orthopedic decision-making, this is an important step 
toward computer-assisted decision-making.
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Chung et al. 2018, Urakawa et al. 2019). Machine learning 
and neural networks are also becoming more commonplace 
research tools in orthopedics. They hold great potential, as 
the diagnostic underpinning and intervention decision relies 
heavily on medical imaging (Cabitza et al. 2018). The strength 
of these learning algorithms is their ability to review a vast 
number of examinations and examples, and the speed and con-
sistency with which they can review each examination and at 
the same time remember thousands of categories without issue. 

We therefore hypothesized that a neural network can learn 
to classify ankle fractures according to the AO/OTA 2018 
classification from radiographs.

Method
Study design
The initial dataset consisted of deidentified orthopedic radio-
graphic examinations of various anatomical regions taken 
between 2002 and 2016 at Danderyd University Hospital in 
Stockholm, Sweden. Through using the radiologist’s report, 
we identified images with a high likelihood of fracture, com-
minution, dislocation, and/or displacement. Based on these 
categories, we randomly selected a study set of 5,495 ankle 
examinations where the categories allowed for selecting 
cases with a higher likelihood of pathology. We introduced 
this bias to include as many sub-classifications of fractures in 
the dataset as possible. From the study set, we selected 400 
random patients (411 examinations) to include into the test 
set. 75% were chosen for having reports suggesting a frac-
ture. Similarly, we chose the training and validation sets to 
have approximately 50% chance of having a fracture (Figure 
1). This introduced a selection bias towards pathology, as the 
primary task was to distinguish different types of fractures and 
not just the presence of a fracture.

We excluded any examination within 90 days of a previ-
ously included examination, to ensure that the same fracture 
was not included more than once, e.g., pre/post reposition/sur-
gery. We further excluded the few pediatric fractures (defined 
as open physes) as nearly all patients at the hospital are older 

than 15 years. 145 examinations were excluded from training 
and 2 examinations from testing. The final study set included 
4,676 examinations in the training set and 409 examinations 
in the test set.

Labeling and outputs
All examinations selected for the study set were manually 
reviewed and labelled according to the AO/OTA classification 
(Meinberg et al. 2018) down to subgroup but excluding sub-
group qualifiers. We use the term class for a possible classifi-
cation outcome, as a summary term for bone, segment, type, 
group, and subgroup outcome, and specify more clearly when 
necessary. This means we have 39 classes of malleolar frac-
tures with 3 types (A–C), 3 groups per type (1–3) for each 
class, and 27 subgroups (3 subgroups per group). 

Each exam in the training set was reviewed by a minimum 
of 2 out of 5 reviewers (FE, AS, MG, JO, TA) using a custom-
built image-labeling platform displaying the entire full-scale 
examination together with the original radiologist report. 
Reviewer FE was a 5th-year medical student, JO and TA were 
medical doctors. FE, TA, and JO were specifically trained for 
the task of labeling radiographic ankle examinations accord-
ing to the AO/OTA 2018 classification for ankle fractures and 
labeled between 2,000 and 4,000 examinations each. MG is a 
senior orthopedic surgeon specializing in orthopedic trauma 
and AS is a senior orthopedic surgeon. In a second step, all 
examinations classified as having fractures were rereviewed 
by MG before being added to the training set. The test set was 
reviewed by MG and AS. We required a minimum of at least 5 
fractures per outcome in the training dataset before including 
that outcome.

The AO classification is partially ligamentous based and 
as ligaments are not visible on radiographs we therefore used 
proxies for these classes. For infra-syndesmotic lateral malleo-
lar fractures, if the avulsion fragment was ≤ 3 mm from the tip 
we classified it as A1.1, 3–10 mm from the tip as A1.2, and 
≥ 10 mm as A1.3. As the B1.1 and B1.2 class differ only by 
syndesmotic injury, information that was not available to us, we 
chose to separate these by the presence of a step-off in the frac-
ture that could suggest a rotation of the distal fragment. Another 
important note is that we defined B2.1 based on the presence of 
a widening of the ankle fork, and this can thus be falsely nega-
tive if the ankle has been well repositioned in a cast.

Visible fractures of the tibia and fibula were classified as 
far as possible. Only the complete ankle examinations were 
included, but no additional examinations of the tibia, fibula, 
or the foot.

In the AO/OTA 2018 version there is an inherent overlap 
between fibular fractures of the distal end segment (4F3) and 
fractures of the lateral malleolus (44A–C). A distal end seg-
ment fibular fracture (4F3) cannot necessarily be distinguished 
from ankle fractures involving the distal fibula (44A–C). If the 
fracture was deemed not to be associated with an ankle frac-
ture it was coded as a fibular fracture (4F) and if it was deemed 

Rough initial labelling
20,000 exams 

Danderyd University Hospital
2002–2016

Train

Study sample
5,086 exams 

Train set
4,676 exams 

Validation set
410 exams 

Test set
409 exams 

Figure 1. Data flowchart.
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to be part of an ankle fracture it was coded as (44A–C), as by 
Meinberg et al. (2018). The final verdict was decided by MG.

The 2018 AO/OTA revision has separate classifications for 
epiphyseal, metaphyseal, and diaphyseal fractures, and it was 
possible to have multiple labels when multiple fractures and 
fracture systems were present. 

Data set
The training data consisted of labeled examinations passed 
to the network. A subset of the initial dataset was randomly 
selected for the test set and was never used during training or 
validation. We used a biased selection, 75% of fractures, to 
increase the likelihood of selecting rare fracture types. The 
test set was manually and independently classified and veri-
fied by MG and AS using the same platform as in the training 
set. Any cases where there was disagreement were then subse-
quently re-reviewed for a consensus on the final classification 
of the test set (Table 1).

Validation set and active learning 
Before each round of training a new validation set of 400 
patients was randomly selected. Based on the validation out-
come we:
• re-validated categories for training images where the net-

work performed poorly to ensure the quality of training 
labels; 

• used targeted sampling via the network outputs combined 
with specific searches in the radiologist’s reports to extend 
the original training dataset for low-performing categories;

• implemented active learning, where categories with low 
performance despite having plenty of training examples 
were targeted with more data and targeted review of train-
ing labels during training.

Image input
The labeled radiographic images were scaled down with 
retained proportions, so that the largest side had 256 pixels. 
If the image was not square, the shorter side was extended 
with black pixels resulting in a 256 × 256 square proportion-
ally scaled copy.

unique outcome. The “maybe” outcome was included in the 
margin loss during training, but was categorized as “no frac-
ture” during validation and testing. Each outcome was cal-
culated separately so classifying a fracture as type B did not 
follow from classifying a fracture as group B1, which in turn 
was a separate classification from subgroup B1.1. However 
unlikely, it is possible for the network to classify a fracture 
as a type B fracture (between types A and C) and at the same 
time determine that it is a C1.1 fracture for subgroup clas-
sification.

Outcome performance/statistics
The primary outcome was receiver-operating curve (ROC) 
area under curve (AUC) accuracy for AO/OTA malleolar frac-
ture type, group, and subgroup or no fracture outcome for the 
complete examination. Secondary outcomes were fibular and 
tibial AO/OTA classes, as well as any foot fracture when pres-
ent. These were secondary outcomes as we did not look at the 
complete examinations, e.g., proximal femur or foot examina-
tions. To test the diagnostic accuracy of the neural network, we 
also calculated the sensitivity, specificity, and Youden’s index 
(Youden 1950) for each outcome. There is no consensus as to 
what an adequate J is, but bigger J is generally more useful. 
Chung et al. (2018) found that J > 0.71 indicated performance 
superior to an orthopedic surgeon for detecting any fracture 
in hip radiographs. Two-way interobserver reliability Cohen’s 
kappa and percentage agreement was computed between all 
observers. The overall best performing model (highest AUC) 
on the validation set was used for final testing on the test set. 
As there is a large number of categories we also present a 
weighted mean for groups. The weighting is according to the 
number of cases as we want small categories that may perform 
well by chance to have less influence on the weighted mean; 
for AUC the calculation was:

AUCweighted =                                     = WAUC

categories
AUCi * nii = 1Σ

categories
nii = 1Σ

Only outcomes with ≥ 2 cases in the test set were evaluated 
during testing. Main outcomes were classes A–C, group A1–
C3, subgroup A1.1–C3.3.

Table 1. Base distribution of fractures according to the AO classification. Values are 
count (%)

 Train (n = 4,941) Test (n = 409)
Fracture type Yes Maybe No Yes Maybe No

Fracture 2,156 (44) 121 (2) 2,664 (54) 306 (75) 13 (3) 90 (22)
Malleolar (44) 1,696 (34) 63 (1) 3,182 (64) 210 (51) 6 (1) 193 (47)
Tibia distal (43) 254 (5) 6 (0) 4,681 (95) 63 (15) 2 (0) 344 (84)
Fibula (4F2–3) 129 (3) 3 (0) 4,809 (97) 37 (9) 0 (0) 372 (91)
Tibia diaphyseal (42)  88 (2) 0 (0) 4,853 (98) 27 (7) 0 (0) 382 (93)
Other bone 210 (4) 47 (1) 4,684 (95) 35 (9) 5 (1) 369 (90)

“Other bone” generally indicates a visible fracture of the foot. It was possible for an 
examination to have multiple fracture labels.

Neural network design
We used a modified ResNet architecture 
(He et al. 2015) with a layered structure, 
which was randomly initiated at the begin-
ning of the experiment. The network, train-
ing setup including overfitting strategies, is 
presented in Table 2 (Supplementary data). 
Each output had its own 2-layer subnetwork 
and a margin loss. To merge outcomes from 
various images within the same examination 
we used the max. function, i.e., if the net-
work predicted 2 or more outcomes, the one 
with the highest predicted likelihood was 
selected, ensuring each examination had a 
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Results

5,495 radiographic examinations were used in the experiment. 
5,086 examinations were used for training and validation and 
409 examinations (400 unique patients) were withheld in the 
test set, with no patient overlap. 

In the combined data, there were 2,462 examinations with 
a fracture. Malleolar fractures were by far the most preva-
lent fractures (1,906 out of 2,462 fractures) and the major-
ity of them were type B injuries (1,147), followed by type 
A injuries (456) and type C injuries (300). The training set 
had 1,753 malleolar fractures for 39 possible outcomes, aver-
aging 48 positive training cases per outcome, though some 

classes had more fractures than others (Table 3 and Figures 
1 and 2).

Main results
32 out of 39 outcomes had 2 or more examinations in the test 
set. Most outcomes were possible to train and most classes 
that disappeared had too few test cases (Table 4).

For malleolar fractures, weighted mean AUC came to 0.90 
with varying 95% confidence intervals (CI) for individual 
classes. The network could identify malleolar fractures with 

Table 3. Distribution of malleolar fractures by type 
(44A–C), specified by type, group, and subgroup. 
Values are count (%) for samples > 100

AO type Train (n = 4,941) Test (n = 409)

44A (483 train and 31 test cases)
 1.1 78 (22) 6 
 1.2 165 (46) 7 
 1.3 114 (32) 9 
 2.1 105 (93) 5 
 2.2 1 (1) –
 2.3 7 (6) 2 
 3.1 11  –
 3.3 2  2 
44B (1,015 train and 136 test cases)
 1.1 385 (74) 39 
 1.2 132 (25) 26 
 1.3 6 (1.1) 2 
 2.1 99 (44) 20 
 2.2 105 (47) 16 
 2.3 19 (8.5) 2 
 3.1 76 (28) 12 
 3.2 152 (56) 13 
 3.3 41 (15) 6 
44C (255 train and 47 test cases)
 C1
 1.1 85 (67)  17 
 1.2 20 (16) 5 
 1.3 22 (17) 2 
 2.1 30  6 
  2.2 21  3 
 2.3 39  9 
 3.1 10  3 
 3.2 9  1 
  3.3 19  1 
 

Table 4. Outcome measures for the most important groups and 
weighted average AUC for each malleolar AO type, group, and sub-
group combined

 Cases Sensitivity Specificity  
AO type n = 409   (%)   (%)  Youden’s J   AUC (95% CI) 

44A  
 Base  32 73 81 0.54 0.81 (0.72–0.88)
   1  22 88 75 0.63 0.87 (0.77–0.94)
      1.1  6 75 93 0.68 0.87 (0.70–0.98)
      1.2  7 80 83 0.63 0.79 (0.54–0.94)
      1.3  9 75 88 0.63 0.84 (0.70–0.95)
    2  7 100 74 0.74 0.91 (0.83–0.97)
      2.1  5 100 74 0.74 0.89 (0.80–0.97)
    3  2 100 86 0.86 0.90 (0.83–0.96)
44B  
  Base  137 89 88 0.77 0.93 (0.90–0.95)
    1  67 90 88 0.77 0.93 (0.88–0.96)
      1.1  39 87 84 0.71 0.89 (0.85–0.93)
      1.2  26 92 85 0.77 0.90 (0.81–0.96)
    2  38 82 84 0.65 0.87 (0.80–0.92)
      2.1  20 100 72 0.72 0.87 (0.83–0.92)
      2.2  16 88 74 0.62 0.82 (0.68–0.91)
      2.3  2 100 98 0.98 0.99 (0.97–1.00)
    3  32 78 90 0.68 0.90 (0.85–0.94)
      3.1  12 83 75 0.58 0.79 (0.63–0.90)
      3.2  13 92 82 0.74 0.91 (0.84–0.96)
      3.3  6 100 91 0.91 0.96 (0.93–0.98)
44C 
 Base  47 74 90 0.65 0.86 (0.79–0.92)
    1  24 75 79 0.54 0.83 (0.72–0.91)
      1.1  17 76 85 0.61 0.86 (0.74–0.94)
      1.2  5 80 92 0.72 0.89 (0.77–0.97)
      1.3  2 100 88 0.88 0.92 (0.86–0.97)
    2  18 100 72 0.72 0.91 (0.86–0.95)
      2.1  6 83 93 0.76 0.91 (0.79–0.98)
      2.2  3 100 88 0.88 0.96 (0.88–1.00)
      2.3  9 100 77 0.77 0.88 (0.84–0.92)
    3  5 100 88 0.88 0.95 (0.90–0.98)
Malleolar  216 86 90 0.76 0.92 (0.89–0.95)
Weighted mean AUC
 A     0.84
 B     0.90 
 C     0.87 
 Malleolar     0.90  

Criterion based on Youden’s Index (Youden 1950, Aoki et al. 1997, 
Shapiro 1999, Greiner et al. 2000) defined as 
YI(c) = maxc (Se(c) + Sp(c)–1). 
This is identical (from an optimization point of view) to the method 
that maximizes the sum of sensitivity and specificity (Albert 1987, 
Zweig and Campbell 1993) and to the criterion that maximizes con-
cordance, which is a monotone function of the AUC.
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an AUC 92 (CI 0.89–0.95). For malleolar fracture overall best 
performance was achieved for type B (1,015 in the training 
and 136 in the test set) injuries with AUC 0.93 (CI 0.90–
0.95), then type C (255 cases in the training and 47 cases in 
the test set) with AUC 0.86 (CI 0.78–0.92), and then type A 
(483 in the training and 31 in the test set) with AUC 0.81 (CI 
0.72–0.88).

Type A injuries exhibited the poorest results with weighted 
average AUC 0.84. It was not possible to evaluate subgroups 
A2.1, A2.3, and subgroups of A3. Average AUC for type B 
injuries was 0.90 and all classes, except the subgroup B13, 
were evaluated. Weighted average AUC for type C injuries 
was 0.87 but it was not possible to evaluate subgroups to C3. 
Despite there being almost twice as many type A fractures in 
the data set there were fewer type A fractures in the test set, 
which resulted in few outcomes for type A fractures.

Other anatomies
The number of fractures in the other anatomies did not allow 
for a detailed analysis for many of the classes. In the test set 
the second most common fracture group was the distal tibia 
group with weighted average AUC 0.90. We found similar 
values for the isolated fibular and tibial diaphysis fractures. 
The foot fractures were somewhat less performant, mostly due 
to metatarsal fractures (see Supplementary data).

Other analyses
Overall Cohen’s kappa between reviewers was 0.65 (and 0.55 
on the AO classification task) (see Supplementary data). When 
reviewing the failed images there was no obvious pattern. The 
presence of casts was common (Figure 3) or discrete findings 
(Figure 4) were common but we could not see any clear pat-
tern that the failures followed.

Discussion

This study is the first, to our knowledge, that classifies frac-
tures according to the AO/OTA classification, and ankle frac-
tures in particular, using machine learning. We believe that an 

Figure 3. The network failed to identify this image as a malleolar type 
A fracture. Among the malleolar fractures it was predicted as a type C 
fracture.
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Figure 2. Distribution of AO classes in the malleolar fracture data.

Figure 4. The examination should have been a malleolar type C fracture but the network predicted type B fracture.
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information would have little impact on the outcome. CT and 
MRI are also not performed randomly on fractures and includ-
ing them in our results, when available, would introduce an 
information bias. We also strongly believe that clinicians will 
always have to add their clinical exam to the interpretation 
even with these new technologies, as some information simply 
is not present in a radiographic image.

This study reports the outcome of the top classification, the 
highest AUC. For many malleolar subgroups the difference is 
small and it would make sense to present additional likely out-
comes, in particular outcomes where the differences are only 
in ligamentous injuries, alongside each other—for example 
B1.1 and B1.2. A repositioned or stabilized fracture can hide 
a previously obvious ligamentous injury, changing the clas-
sification. 

Our data entailed a selection bias towards pathological 
material and did not represent the average population. Despite 
this, there were insufficient cases for many subclasses and 
for some outcomes the statistical significance and confidence 
intervals were difficult to assess. Uncommon pathologies are 
problematic for any human observer or deep learning system. 
We have combated this by selecting new cases for annotation 
where the network has either (1) difficulties distinguishing a 
category, or (2) high likelihood of a rare fracture class, a form 
of active learning. This interactive approach to machine learn-
ing proved useful and could be repeated, and adding more data 
could help target rare fractures.

The human observers had access to full-scale radiographs 
and reports whereas the network, at best, had proportionally 
scaled 256 × 256 representations. Despite this limitation, many 
of the categories were correctly identified. We believe that this 
is most likely due to the fact that the network reviews each 
image and thus is able to find even tiny changes. We chose 
this approach as our experience has indicated that increasing 
image size has little benefit. Similarly, we have tried some 
different permutations of the network structure with mostly 
similar outcomes. It is important to keep in mind that the lit-
erature surrounding deep learning is vast and there are many 
interesting network designs that could be tested. Regardless, 
we believe that the chosen structure fulfills our aim, to find a 
network that can help clinicians to use complex fracture clas-
sifications on an everyday basis.

Despite having a large dataset and actively searching for 
pathology we found it hard to find an adequate number of 
fractures for many of the classes. While we can retrain the 
network to fit new categories, it is important to remember that 
fractures in case reports and other rare entities will be a chal-
lenge for deep learning applications and clinicians alike. 

Generalizability
The source population was dominated by a Caucasian popula-
tion. We excluded only examinations with open physes and 
believe that our results generalize well in a regular clinical set-
ting, though we would expect more negative cases and simple 

average AUC 0.90 for the relatively complex AO/OTA clas-
sification task, on a small training set with many categories, is 
a good outcome. 

This study shows the potential benefits of an AI classifica-
tion, where complex classifications can become commonplace 
to the benefit of patients and their treatment. We have shown 
that a neural network, using a combinatory approach with dif-
ferent machine learning methods and targeted labeling, can 
learn even rare fracture types.

In the AO/OTA classification, C injuries tend to be more 
complex and severe than type B injuries, which in turn are 
worse than type A injuries. Higher group and subgroup num-
bers also tend to entail more severe and complex injuries. We 
found that malleolar type A injuries decreased in frequency 
with severity, and that there were fewer type A than type B 
injuries. One reason for this was that many minor fractures, 
e.g., simple avulsion fragments, are a form of distortion that, 
despite being commonplace, are difficult to diagnose through 
radiographs.

Fonseca et al. (2017) found a kappa of 0.38 for the AO clas-
sification (not subgroups) whereas our study found kappa 0.55 
between the human reviewers MG and AS. In a separate test, 
388 of the examinations in the test set were reviewed by a 
resident emergency medical specialist (TA). Kappa for this 
subset of the training set was 0.53 or an agreement of 92%. 
One reason for this could be that reviewers usually had access 
to the radiologist’s report, probably improving kappa, while 
the network never did. While the report never specified AO 
classification and mostly helped identify discrete fractures, it 
also helped fill in the lack of additional patient information. 
In addition, the very unsymmetrical distribution of outcomes 
(marginal probabilities for each individual class) between AO 
classes (e.g., C3.3 is much less uncommon than B1.1) likely 
unduly penalizes kappa for the AO classification task (Del-
gado and Tibau 2019). Compared with Juto et al. (2018) we 
found a percentile agreement of ≥ 91% for all levels (fracture 
type, group, and subgroup) between observers. Both Fonseca 
et al. (2017) and Juto et al. (2018) used the previous AO/OTA 
classification.

Detecting a fracture was easy for humans and computer 
alike and there was great agreement, but in line with other 
studies AO/OTA classification is complicated as is shown by 
the declining kappa. This strengthens the case for an auto-
mated classification system that can assist in making uniform 
classifications. Overall, the network was good at classifying 
ankle fractures and its subgroups though some subclasses 
were difficult and many had insufficient data.

Limitations
We relied on only radiographs and the radiologist’s report, 
which does not fully allow for discrimination between the 
AO/OTA classifications, especially where ligamentous inju-
ries are important. However, as most ankle fractures will never 
undergo a CT or MRI examination, extracting additional chart 
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fractures than in our material. The clinical performance of the 
algorithm may therefore differ from the sample performance. 
Our results also extend to the Danis–Weber classification to 
the extent that it is a subset of the AO classification.

Interpretation
A neural network can learn the AO/OTA classification from 
relatively few training examples. Even with this small data set 
we find that we can achieve high predictive accuracy for most 
categories. The strength of an AI model is the ability to fur-
ther improve the model by adding more training cases and its 
potential for uniform classification.

Supplementary data
Table 2, inter-rater reliability (IRR) results, and data on other 
fracture classes are available as supplementary data in the online 
version of this article, http://dx.doi.org/10.1080/17453674. 
2020.1837420
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