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Background and purpose — External validation is a 
crucial step after prediction model development. Despite 
increasing interest in prediction models, external validation 
is frequently overlooked. We aimed to evaluate whether joint 
registries can be utilized for external validation of prediction 
models, and whether published prediction models are valid 
for the Dutch population with a total hip arthroplasty.

Methods — We identified prediction models developed in 
patients undergoing arthroplasty through a systematic litera-
ture search. Model variables were evaluated for availability 
in the Dutch Arthroplasty Registry (LROI). We assessed the 
model performance in terms of calibration and discrimina-
tion (area under the curve [AUC]). Furthermore, the models 
were updated and evaluated through intercept recalibration 
and logistic recalibration.

Results — After assessing 54 papers, 19 were excluded 
for not describing a prediction model (n = 16) or focusing on 
non-TJA populations (n = 3), leaving 35 papers describing 
44 prediction models. 90% (40/44) of the prediction models 
used outcomes or predictors missing in the LROI, such as 
diabetes, opioid use, and depression. 4 models could be 
externally validated on LROI data. The models’ discrimina-
tion ranged between poor and acceptable and was similar to 
that in the development cohort. The calibration of the models 
was insufficient. The model performance improved slightly 
after updating.

Conclusion — External validation of the 4 models 
resulted in suboptimal predictive performance in the Dutch 
population, highlighting the importance of external valida-
tion studies.

Several prediction models have been developed for hip and 
knee arthroplasty, aiming to predict the probability of an out-
come after surgery [1-6]. These predicted probabilities can 
provide valuable information to patients and clinicians as an 
aid in clinical decision-making and expectation management. 
However, existing prediction models for arthroplasty are often 
not suitable for use in clinical practice, due to either poor pre-
dictive performance or lack of external validation [7,8].

External validation plays an important role in assessing the 
generalizability and performance of these models in a dif-
ferent set of patients [9]. Ideally, data for external validation 
purposes is collected specifically for the purpose of external 
validation, but this approach can be time-consuming and 
resource-intensive. Another, more common option is to use 
previously collected data for external validation, although 
absence of variables or different variable definitions may 
complicate the use of existing databases.

Large datasets, such as (inter)national registries, are a 
potentially rich source for external validation. Registry data 
is relatively easily accessible and often includes large patient 
cohorts. However, one drawback is that registry data is not 
collected specifically for the purpose of external validation 
of prediction models. As a result, the definitions of predictor 
variables may differ from those required for external valida-
tion, or certain predictor variables may not be collected in the 
registry at all [10]. Nonetheless, it is worthwhile to explore 
whether joint registries can be utilized for external validation 
of clinical prediction models. The objective of this study was 
(i) to assess whether joint registries can be utilized for external 
validation of prediction models, and (ii) to evaluate whether 
published prediction models are valid for the Dutch total hip 
arthroplasty (THA) population. 
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Methods
Study design
The study was designed as a systematic literature search per-
formed in PubMed from the date of inception to April 2023 for 
studies describing prediction models that predict the risk of 
revision or mortality after total joint arthroplasty (TJA).

The study was reported according to the Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis (TRIPOD) statement for prediction 
model studies [11].

Use of joint registries for external validation
The search string was based on the keywords arthroplasty, pre-
diction models, revision, and mortality as the latter 2 are out-
comes available in the LROI (see Appendix A for the detailed 
search strategy). Literature was screened by 1 author (MB). 
Papers were excluded if no prediction model was described, 
or the model was not developed for TJA patients. To assess 
whether joint registries can be utilized for external validation 
of prediction models, we used the Dutch Arthroplasty Registry 
(LROI) as an example. We evaluated the utility of using joint 
registries for this purpose by evaluating the frequency of the 
predictors of the models that were found by the literature search 
and whether they are available in the LROI. Next, we evaluated 
the quality of the registry data by assessing the percentage of 
missing data per predictor variable, and whether the definitions 
of the variables used are standard or could be harmonized [10]. 

External validity of published prediction models
Next, we selected prediction models from the literature search 
that could be externally validated on data from the LROI to 
test their validity in Dutch clinical practice. Models were 
included if a prediction model was developed for patients 
who underwent TJA, and when the outcome and all predictors 
in the model were available in the LROI. This resulted in 2 
papers describing 4 prediction models (Table 1).

The 4 selected prediction models were all developed in 
patients undergoing primary THA. As a result, the study popu-
lation was narrowed down from TJA to THA. 3 out of 4 iden-
tified models (models 1 to 3) were originally developed in a 
Finnish population [3]. Data on all primary THAs (n = 25,919) 
performed in Finland between May 2014 and January 2018 
was collected in the Finnish Arthroplasty Register and used 
for model development. The first model (model 1) predicts the 
risk of short-term (< 6 months after primary THA) revision 
for dislocation. The second model (model 2) was developed to 
predict the risk of short-term (< 6 months after primary THA) 
revision for periprosthetic fracture. The third model (model 3) 
was developed to assess the risk of short-term (< 6 months) 
mortality after primary THA. The last model (model 4) aimed 
to predict the risk of revision within 5 years after primary 
THA (n = 20,592) [2]. It was developed on data from Kaiser 
Permanente’s Total Joint Replacement Registry. The cohort 
included all patients who had primary procedures performed 
between April 2001 and July 2008.

LROI dataset for external validation
Data for external validation was obtained from the LROI, a 
nationwide population-based registry on TJAs performed in 
the Netherlands since 2007. All Dutch hospitals report patient 
characteristics, surgical techniques, prosthesis characteristics, 
and patient-reported outcomes of total joint arthroplasties to the 
LROI. The data completeness for primary total hip arthroplas-
ties (THAs) was 97% in 2013 and up to 99% since 2016 [12].

External validation cohorts
Cohort 1. For the validation of the first 3 models, the out-
comes of interest were revision (models 1 and 2) or mortal-
ity (model 3) within 6 months after THA. Data on all reg-
istered primary THAs performed between January 2007 
and December 2020 in the Netherlands was provided by the 
LROI. All surgeries before 2014 were excluded to match 
patient sampling time between the development and external 
validation cohort. Patients operated on after December 2019 

Table 1. 4 prediction models that were included from the literature

Paper	 Model	 	 	 	 	 Model	coefficients	a

1	 Venäläinen	[3]	 Logistic	regression	model	predicting	
	 	 short-term	revision	(within	6	months)	
	 	 for	dislocation
2	 Venäläinen	[3]	 Logistic	regression	model	predicting	
	 	 short-term	revision	(within	6	months)	
	 	 for	periprosthetic	fracture
3	 Venäläinen	[3]	 Logistic	regression	model	predicting	
	 	 short	term	mortality	(within	6	months)
4	 Paxton		[2]	 Logistic	regression	model	predicting	
	 	 the	risk	of	a	revision	surgery	within	5	
	 	 years	after	total	hip	arthroplasty

a The	predicted	probability	of	the	outcome	is	calculated	as:	1/(1+e^(–(linear	predictor)))

Linear	predictor	=	–6.801	+	0.459*ASA	class	+	0.861*preoperative	fracture	
+	0.675*previous	contributing	operations	+	0.606*posterior	surgical	approach	
+	0.355*32-mm	head	diameter
Linear	predictor	=	–9.138	+	0.404*ASA	class	+	0.244*age	(per	10	years)	+	
1.479*cementless	fixation

Linear	predictor	=	–7.017	+	0.491*ASA	class	+	0.104*age	(per	10	years)	+	
0.878*preoperative	fracture
Linear	predictor	=	–2.66834	–	0.01742*age	+	0.215285*female	sex	+	
0.067322*√BMI	–	0.16622*osteoarthritis
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were excluded to ensure sufficient follow-up time. Thus, we 
included all patients with a primary THA performed between 
January 2014 and December 2019 for the external validation.

Cohort 2. For the validation of the fourth model, a different 
group of patients was selected from the LROI dataset. As body 
mass index (BMI) was a predictor in the model, and BMI has 
only been registered in the LROI since 2014, all surgeries 
before 2014 were excluded. To ensure a minimum follow-up 
of 5 years, all arthroplasties performed after December 2015 
were excluded. Hence, we included all patients who received 
a primary THA between January 2014 and December 2015.

Predictor definitions LROI
The 4 models used a subset of the following predictors: sex, 
age, BMI, ASA classification, osteoarthritis or fracture as 
diagnosis for primary THA, the presence of 1 or more pre-
vious contributing surgeries, surgical approach (anterolateral 
or posterior), type of fixation (cemented or cementless), and 
head diameter (Table 1). All were reported to the LROI at the 
time of primary surgery. Osteoarthritis was defined as all types 
of osteoarthritis (including secondary arthritis and coxarthro-
sis). Fracture as diagnosis for primary THA was defined as the 
implantation of primary THA within 5 days after hip fracture 
(including medial/lateral collum fracture, femoral neck frac-
ture, trochanteric femur fracture). Previous surgeries of the 
hip include: osteosynthesis, osteotomy, arthrodesis, Girdle-
stone procedure, arthroscopy, and/or other. Surgical approach 
was categorized as: straight lateral, posterolateral, anterolat-
eral, anterior, straight superior, or other. An overview of the 
variable definitions of both the LROI and the model devel-
opment papers can be found in Table 2. Two predictors had 
different definitions in the development paper compared with 
the LROI. In the development paper, surgical approach was 
categorized as posterior or anterolateral, where the LROI uses 
6 categories. In the external validation, we used the posterolat-
eral versus all other categories to calculate the predicted risk. 
Also, the predictor “previous surgeries” was defined slightly 
differently between the development paper and the LROI. 
Girdlestone procedure and arthroscopy are not explicitly men-
tioned as previous contributing surgery in the development 
paper but were included in the LROI data. Also, both included 
“other” as a category. In either case, it is not explicitly stated 
which operations are included, thus it is unclear whether the 
same previous surgeries are included in the predictor. In the 
external validation, we used the predictors as described above, 
according to the LROI definition.

Outcome definitions LROI
A revision surgery was defined as the removal or exchange 
of the inlay, femoral head, acetabulum, and/or femur compo-
nent, and was registered in the LROI. In models 1 and 2, only 
revisions within 6 months for dislocation or for periprosthetic 
fracture were analyzed. Dislocation was defined as recur-
ring dislocation of the hip prosthesis. Periprosthetic fracture 

Table 2. Overview of variable definitions in the development and 
validation cohorts

Variable	 Definition

Mortality	
	 LROI	 Retrieved	from	national	insurance	database	
	 Model	1–3	 Dates	of	death	are	retrieved	from	the	Population	

Information	System	maintained	by	the	Population	
Register	Centre,	Finland	

 Model 4 –
Revision	
	 LROI	 Removal	or	exchange	of	the	inlay,	femoral	head,	

acetabulum,	and/or	femur	component	
	 Model	1–3	 Change	or	removal	of	at	least	1	prosthetic	component
	 Model	4	 Removal	or	exchange	of	at	least	1	prosthetic	compo-

nent
Reason	for	revision	
	 LROI	 	Infection;	wear	of	cup/liner;	periprosthetic	fracture;	

malposition	or	malalignment;	luxation;	periarticular	
ossification;	loosening	of	acetabular	component;	
loosening	of	femur	component;	symptomatic	metal	on	
metal	articulation;	Girdlestone;	other	

	 Model	1–3	 Dislocation	or	periprosthetic	fracture	of	femur	or	
acetabulum	reported	as	main	reasons	for	revision

 Model 4 –
ASA 
	 LROI	 	I	/	II	/	III	/	IV	
	 Model	1–3	 	I	/	II	/	III	/	IV	
 Model 4 –
Preoperative	fracture	
	 LROI	 Primary	THA	within	5	days	after	hip	fracture	(includ-

ing	medial/lateral	collum	fracture,	femoral	neck	
fracture,	trochanteric	femur	fracture)	

	 Model	1–3	 Primary	THA	for	fracture	
 Model 4 –
Previous	surgeries	
	 LROI	 Includes:	osteosynthesis,	osteotomy,	arthrodesis,	

Girdlestone	procedure,	arthroscopy,	and/or	other
	 Model	1–3	 Includes:	osteotomy	of	acetabulum	or	femur,	osteo-

synthesis	of	tibia	or	femur,	or	other	(e.g.,	arthrodesis)
 Model 4 –
Approach	
	 LROI	 Straight	lateral,	posterolateral,	anterolateral,	

anterior,straight	superior,	other
	 Model	1–3	 Posterior,	anterolateral	(modified	Hardinge)
 Model 4 –
Head	diameter	
	 LROI	 	22–28,	32,	36,	and	≥	38	mm	
	 Model	1–3	 28,	32,	36,	and	>	36	mm	
 Model 4 –
Age
	 LROI	 	In	years	
	 Model	1–3	 In	years
 Model 4 – 
Type	of	fixation	
	 LROI	 	Cemented,	cementless,	hybrid:	femur	cemented,	

reverse	hybrid:	acetabulum	cemented
	 Model	1–3	 Cemented,	cementless,	hybrid,	reverse	hybrid
 Model 4 –
Sex 
	 LROI	 	Male,	female,	non-specified,	unknown
	 Model	1–3	 Male,	female
	 Model	4	 Male,	female
Osteoarthritis	
	 LROI	 	All	types	of	osteoarthritis	(including	secondary	arthri-

tis	and	coxarthrosis)	as	primary	diagnosis	
 Model 1–3 – 
	 Model	4	 Osteoarthritis	as	primary	diagnosis
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was defined as a fracture around the hip prosthesis causing 
an interruption of the fixation or stability and therefore need-
ing revision surgery. The reason for revision was reported by 
the surgeon directly after surgery to the LROI. In the fourth 
model, all revision surgeries within 5 years after primary THA 
were included as event. Model 4 and the LROI use the same 
definition for revision surgery. In the paper of models 1 to 
3, the exact definition of the outcome was not described, and 
therefore the authors may have used another definition. 

For model 3, the outcome of interest was mortality within 
6 months after primary THA. Mortality is obtained from the 
Dutch national insurance database (Vektis), and linked to the 
LROI. Vektis contains records of all deaths of all Dutch citizens. 

Sample size
No formal sample size calculation was performed. All patients 
in the LROI who were eligible for the study were included. 
This resulted in validation cohorts that exceeded the develop-
ment cohort and recommendations for sample size [13,14].

Statistics
In cohort 1 (models 1 to 3), ASA was missing in 285 patients 
and age in 71 patients. In cohort 2, BMI was missing in 2,580 
patients and age in 45 patients. Due to the low number of miss-
ing data points in LROI data (cohort 1: < 1%; cohort 2: < 5%), 
and assuming missing completely at random, we decided to do 
a complete case analysis. Patient age values were excluded if 
the age was above 105 years (n = 17) or below 10 years (n = 
25). BMI values were excluded if BMI exceeded 70 (n = 29) 
or was below 10 (n = 2). These cut-off thresholds were applied 
according to LROI recommendations [15].

The baseline characteristics were described as means and 
standard deviation (SD) or median and interquartile range 
(IQR) for continuous variables (as appropriate), and number 
and percentage (%) of total for categorical variables. 

To evaluate model performance on LROI data, we assessed 
discrimination and calibration. Discrimination of the models 
was assessed by calculating the area under the receiver-operat-
ing characteristic curve (AUC). The discrimination reflects the 
ability of a model to discriminate between those with and those 
without the outcome. For interpretation of AUC values, cut-off 
values < 0.7 (poor), 0.7–0.8 (acceptable), 0.8–0.9 (excellent), 
and > 0.9 (outstanding) were used [16]. Calibration was evalu-
ated by plotting the observed probabilities against the pre-
dicted probabilities of the outcome and calculating the calibra-
tion slope and the intercept (or calibration-in-the-large) [17]. 
Calibration reflects the agreement between the predicted prob-
ability of developing the outcome as estimated by the model 
and the observed outcome. A perfect calibration-in-the-large 
(or mean calibration) has a slope of 1 and an intercept of 0. A 
calibration curve close to the diagonal indicates that the pre-
dicted probability corresponds well to the observed probability.

After the validation of the models on LROI data, models 
were updated in 2 steps [18]. First, the intercepts were recali-

brated to improve calibration-in-the large by aligning observed 
outcome rates and mean predicted probability. Second, logis-
tic recalibration was performed to correct miscalibration of 
the predicted probabilities, to prevent general over- or under-
estimation of risks. In this step, the model intercepts as well 
as the predictor coefficients were updated [18]. These updated 
models were re-evaluated by analyzing their discrimination 
and calibration performance. 

All analyses were performed using R software (version 
4.2.1; R Foundation for Statistical Computing, Vienna, Aus-
tria) with packages rms (v6.3.0) and CalibrationCurves 
(v1.0.0) [19-21]. 

Ethics, funding, and disclosures
Data was made available by the LROI; however, restrictions 
apply to the availability of this data, which was used under 
license for the current study. All data was received completely 
de-identified. The LROI uses an opt-out system to require 
informed consent from patients. This study received no fund-
ing. No conflicts of interest were declared. Complete disclo-
sure of interest forms according to ICMJE are available on the 
article page, doi: 10.2340/17453674.2024.42449

Results
Use of joint registries for external validation
Our literature search resulted in 54 hits, of which 16 papers 
did not describe a prediction model, and 3 papers described 
a non-TJA population, and were therefore excluded (Figure 
1). This resulted in 35 papers describing 1 or more prediction 
models developed for a TJA population. A total of 44 unique 
prediction models were described in the 35 papers. While the 
literature search was aimed at outcomes that are available 
in the LROI, the prediction models also predicted outcomes 
other than revision or mortality. Complications, or specifically 

Papers identified from databases 
n = 54

Papers screened
n = 54; 47 prediction models

 

Papers excluded (n = 19):
– did not describe a prediction model, 16
– not a TJA population, 3; 
   prediction models excluded, 3 

Papers excluded (n = 33):
– outcome not available in LROI, 12;
   prediction models excluded, 14
– predictors not available in LROI, 21; 
   prediction models excluded, 26 

 

Papers assessed for eligibility
n = 35; 44 prediction models

Papers included in review
n = 2; 4 prediction models 

Figure	1.	Flowchart	of	literature	search.
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infection, was commonly used as outcome. A total of 193 
unique predictors were used in the prediction models; only 31 
occurred in more than 1 model (see Appendix B). The most 
prevalent predictors that are not available in the LROI are: 
diabetes mellitus (used in 9 prediction models), depression 
(used in 6 prediction models), insurance type (used in 6 pre-
diction models), and opioid use (used in 6 prediction models). 
Most predictors that are available in the LROI have less than 
1% missing data and are either measured in a standardized 
way or can be harmonized. BMI, which has been recorded 
since 2014, has a maximum of 4.6% missing data. This may 
limit the follow-up period for patients when BMI is used as a 
predictor, potentially impacting the validity of the results.

External validity of published prediction models
Of the 35 papers from the literature search that described 
44 prediction models, 14 models were excluded because the 
outcome of the model was not available in the LROI, and 26 
models were excluded because the prediction models included 
predictors that were not available in the LROI (Figure 1; see 
Supplementary data for prediction model papers and reasons 
for exclusion). After excluding 40/44 models, 4 prediction 
models described in 2 papers were left [2,3]. Thus, 4 out of 
44 models (9%) on a TJA population could be externally vali-
dated using LROI data.

External validation cohort
Cohort 1. 178,422 patients received a primary THA between 
2014 and 2020 in the Netherlands (Table 3). The mean age 
of the cohort was 69 years (SD 10.5), and 65% were female. 
Most patients received a THA due to osteoarthritis (87%). 
The baseline characteristics of the LROI validation cohort 
were comparable to the development cohort of models 1 to 
3; only ASA and head diameter were differently distributed. 
The majority of the patients had ASA 2, while in the devel-
opment cohort ASA 3–4 was more common. In the LROI, 
in 60% of the surgeries the head diameter was 32 mm, com-
pared with the development cohort where 73% had 36 mm 
heads. Comparing the outcome prevalence between the 
cohort on which the models were developed and the LROI 
validation cohort revealed a prevalence of revision within 6 
months due to dislocation of 0.4% in the LROI, and 0.7% 
in the development cohort (Table 3). A revision due to frac-
ture within 6 months occurred in 0.3% of the patients in the 
LROI, and 0.5% in the development cohort. The prevalence 
of mortality < 6 months was 0.6% in the LROI, and 0.7% in 
the development cohort.

Cohort 2. 56,675 patients received a primary THA between 
2014 and 2015. The baseline characteristics were comparable 
to the patients operated on between 2014 and 2020. The base-
line characteristics of the development cohort of model 4 were 
not described in the development paper, and thus could not be 
included (Table 3). The prevalence of revision < 5 years was 
3.1% in the LROI, and 3.1% in the development cohort.

Table 3. Baseline characteristics. Values are count (%) unless oth-
erwise specified

	 	 External	validation		 Development
	 	 cohort	1	 cohort	2	 study
	 	 	(LROI)	 	(LROI)	 model	1–3	
Factor	 (n	=	178,422)	 (n	=	56,675)	 (n	=	8,640)

Female	sex	 116,198	(65)	 37,132	(66)	 4,967	(58)
Age	mean	(SD)	 68.9	(10.5)	 68.8	(10.6)	 67.6	(10.8)
BMI	mean	(SD)	 27.3	(4.6)	 27.3	(4.6)	 28.1	(4.8)
	 missing	 3,135	(1.8)	 2,580	(4.6)	 971	(11)
ASA   
	 1	 30,832	(17)	 11,183	(20)	 1,014	(12)
	 2	 114,124	(64)	 36,832	(65)	 4,065	(48)
	 3–4	 33,181	(19)	 8,401	(15)	 3,357	(40)
	 missing	 285	(0.2)	 259	(0.5)	 204	(2.4)
Diagnosis	 	 	
	 osteoarthritis	 154,597	(87)	 48,942	(86)	 7,138	(86)
	 fracture	 7,918	(4.4)	 1,128	(2.0)	 527	(6.4)
	 inflammatory	
	 			arthritis		 195	(0.1)	 66	(0.1)	 144	(1.7)
	 missing	 482	(0.3)	 377	(0.7)	 321	(3.7)
Previous	surgeries	 8,421	(4.7)	 2,710	(4.8)	 167	(1.9)
Approach	 	 	
	 posterolateral	 102,677	(58)	 34,605	(61)	 6,731	(80)
	 anterior	 44,044	(25)	 8,261	(15)	 –
	 anterolateral	 8,330	(4.7)	 2,948	(5.2)	 1,688	(20)
	 straight	lateral	 21,626	(12)	 10,477	(19)	 –
	 other	 1,437	(0.8)	 154	(0.2)	 –
	 missing	 308	(0.2)	 230	(0.4)	 221	(2.5)
Head	diameter,	mm	 	 	
	 22–28	 32,736	(18)	 14,204	(25)	 105	(1.2)
	 32	 106,498	(60)	 30,547	(54)	 2,076	(25)
	 36	 36,775	(21)	 11,406	(20)	 6,130	(73)
	 ≥	38	 513	(0.3)	 143	(0.3)	 89	(1.1)
	 missing	 1,905	(1.1)	 115	(0.2)	 240	(2.7)
Type	of	fixation	 	 	
	 cementless	 115,017	(65)	 35,387	(62)	 5,448	(65)
	 cemented	 44,727	(25)	 15,172	(27)	 676	(8.1)
	 hybrid		 18,527	(10)	 6,005	(11)	 2,205	(27)
	 missing	 151	(0.1)	 111	(0.2)	 311	(3.5)
Revision	for	
	 dislocation	<	6	months	 (0.4)	 –	 (0.7)
	 fracture	<	6	months	 (0.3)	 –	 (0.5)
Mortality	<	6	months	 (0.6)	 –	 (0.7)
Revision	<	5	years	 –	 (3.1)	 –

NB.	The	baseline	characteristics	of	the	test	cohort	of	model	4	were	
not	described	in	the	article,	and	thus	not	included	in	this	table.

Table 4. Area under the curve (AUC) with 95% confidence intervals 
for the development cohort and in the LROI dataset

	 AUC	external	 AUC	test	cohort
Model	 validation	cohort	 development	study

1.	Revision	for	dislocation	
	 				<	6	months	 0.64	(0.59–0.68)	 0.64	(0.56–0.72)
2.	Revision	for	fracture	
	 				<	6	months	 0.67	(0.65–0.70)	 0.65	(0.58–0.72)
3.	Mortality	<	6	months	 0.79	(0.77-0.80)	 0.84	(0.78–0.90)
4.	Revision	<	5	years	 0.53	(0.51–0.54)	 0.56 a

 a The	AUC	of	model	4	was	not	described	in	the	paper	but	may	be	
requested	from	the	authors.
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External validation
Model 1, predicting the risk of revision for dislocation < 6 
months, had a poor discriminative ability; the AUC was 0.64 
(CI 0.59–0.68) in the external validation cohort (Table 4). The 
AUC of model 2, which predicts risk of revision for fracture < 
6 months, was 0.67 (CI 0.65–0.70). Model 3, which predicts 
the risk for mortality < 6 months, had the best discriminative 
ability of the 4 models; with an AUC of 0.79 (CI 0.77–0.80) 
the discrimination was acceptable. The lowest discrimina-
tion was that of model 4, predicting risk of all-cause revision 
within 5 years, with an AUC of 0.53 (CI 0.51–0.54). Discrimi-
native ability of the models in the external validation cohort 
was similar to the discriminative ability in the development 
cohorts (Table 4). 

All models had far from optimal calibrated risk predictions 
(Figures 2A–5A). Model 3 largely underestimated the risk of 
mortality within 6 months. Predicted probabilities between 1% 

and 2.5% were lower than observed proportions. The other 3 
models generally overestimated the risk of revision. The inter-
cept and slope are included in the calibration plot. Calibration 
plots were not presented in the development papers, and there-
fore could not be compared.

Model updating
Calibration of all 4 models improved slightly by recalibrating 
the intercept. Logistic recalibration improved the calibration 
of all models (Figures 2C–5C). In model 3, the underestima-
tion of probabilities improved to a slight overestimation of the 
predicted risks above 2%. The calibration of the other models 
improved to a lesser extent, although the predicted risks were, 
overall, more accurate. In model 1, the logistic recalibrated 
model accurately predicted risks below 2%. In model 2, the 
logistic recalibrated model accurately predicted risks below 
1%. The logistic recalibrated model 4 accurately predicted 
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Figure	2.	Calibration	plots	external	validation	of	model	1.	Discrimination,	c-statistics:	0.64	(0.59–0.68).	
A.	Calibration	plot	for	predicted	risk	of	revision	for	dislocation	within	6	months	after	THA	based	on	the	existing	model,	externally	validated	on	

LROI	data.	The	calibration	curve	allows	for	examination	of	calibration	across	a	range	of	predicted	values.	A	curve	close	to	the	diagonal	line	
(i.e.,	perfect	calibration)	indicates	that	predicted	(x-axis)	and	observed	probabilities	(y-axis)	correspond	well.	The	linear	bar	chart	shows	the	
distribution	of	patients	with	(=	1)	or	without	(=	0)	an	observed	outcome.	Calibration,	intercept:	–0.39	(–0.46	to	–0.31),	slope:	0.92	(0.79–1.06).

B.	Calibration	plot	after	intercept	recalibration.	Calibration,	intercept:	–0.00	(–0.07	to	0.07),	slope:	0.92	(0.79–1.06).
C.	Calibration	plot	logistic	recalibration.	Calibration,	intercept:	0.00	(–0.07	to	0.07),	slope:	1.00	(0.85–1.15.
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Figure	3.	Calibration	plots	external	validation	of	model	2.	Discrimination,	c-statistics:	0.68	(0.65–0.70).
A.	Calibration	plot	for	predicted	risk	of	revision	for	periprosthetic	fracture	within	6	months	after	THA	based	on	the	existing	model,	externally	vali-

dated	on	LROI	data.	See	Legend	to	Figure	2.	Calibration,	intercept:	–0.30	(–0.38	to	–0.21),	slope:	0.97	(0.82–1.11).
B.	Calibration	plot	after	intercept	recalibration.	Calibration,	intercept:	–0.00	(–0.08	to	0.08),	slope:	0.97	(0.82–1.11).
C.	Calibration	plot	after	logistic	recalibration.	Calibration,	intercept:	–0.00	(–0.08	to	0.08),	slope:	1.00	(0.85–1.15).
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risks between 3% and 4%. The discrimination of the models 
did not improve after updating.

Discussion

In this study, we assessed whether joint registries can be uti-
lized for external validation of prediction models, and we 
evaluated the performance of 4 published prediction models in 
Dutch clinical practice using data from the LROI. We showed 
that registry data can be used for external validation; how-
ever, the use of registry data for external validation is heavily 
reliant on the availability of predictors and outcomes in the 
registry. The predictors that are available in the LROI seem 
to have sufficient completeness to be used for external valida-
tion. The discrimination in the validation cohorts was similar 
to the discrimination in the development cohorts. Although 

the models tended to over- or underestimate risks at higher 
predicted probabilities, they demonstrated good calibration 
and outperformed individual risk factors at lower predicted 
probabilities, which cover the majority of the data. However, 
due to unavailability of calibration plots of the models on the 
development cohort, a comparison between development and 
validation cohorts could not be made.

Our results support the feasibility of use of registry data 
for external validation of prediction models. A systematic 
review by Groot et al. showed that only 10/59 of the available 
machine learning prediction models for orthopedic surgical 
outcome were externally validated [22]. These 10 models were 
externally validated in 18 different studies. However, only 2 
studies used registry data for external validation. The other 
studies did use existing data sets, which were collected in a 
single institution in the majority of the studies (14/18 studies). 
Furthermore, another study in arthroplasty patients also used 
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Figure	4.	Calibration	plots	external	validation	of	model	3.	Discrimination,	c-statistics:	0.79	(0.77–0.80).	
A.	Calibration	plot	for	predicted	risk	of	mortality	within	6	months	after	THA	based	on	the	existing	model,	externally	validated	on	LROI	data.	See	
Legend	to	Figure	2.	Calibration,	intercept:	0.12	(0.06	to	0.18),	slope:	2.24	(2.12–2.36).
B.	Calibration	plot	after	intercept	recalibration.	Calibration,	intercept:	–0.00	(–0.06	to	0.06),	slope:	2.24	(2.12–2.36).
C.	Calibration	plot	after	logistic	recalibration.	Calibration,	intercept:	–0.00	(–0.06	to	0.06),	slope:	1.00	(0.95–1.05).
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Figure	5.	Calibration	plots	external	validation	of	model	4.	Discrimination,	c-statistics:	0.53	(0.52–0.54).	
A.	Calibration	plot	for	predicted	risk	of	revision	within	5	years	after	THA	based	on	the	existing	model,	externally	validated	on	LROI	data.	See	
Legend	to	Figure	2.	Calibration,	intercept:	0.08	(0.03	to	0.12),	slope:	0.50	(0.29–0.71)
B.	Calibration	plot	for	predicted	risk	of	revision	within	5	years	after	THA	after	intercept	recalibration.	Calibration,	intercept:	–0.00	(–0.05	to	0.05),	
slope:	0.50	(0.29–0.71).
C.	Calibration	plot	for	predicted	risk	of	revision	within	5	years	after	THA	after	logistic	recalibration.	Calibration,	intercept:	–0.00	(–0.05	to	0.05),	
slope:	1.00	(0.57–1.43).
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registry data for prediction model development. Garland et al. 
used data from 2 nationwide registries to develop and exter-
nally validate a prediction model for 90-day mortality after 
THA [1]. These results, together with the current study, show 
that for future external validation studies the use of national 
registries is possible and worth considering. 

The critical factor for the use of registry data for external 
validation is the availability of variables in registries. Of the 
35 papers describing prediction models in our literature search, 
only 2 papers described models that could be validated using 
LROI data. This was due to the unavailability of predictors 
(e.g., diabetes mellitus or other comorbidities) or the unavail-
ability of the outcome (e.g., infection rate, adverse events). 
Previous studies aiming to externally validate models using a 
specific registry also reported limitations as result of variable 
unavailability [23-25]. Slieker et al. (2021) aimed to externally 
validate models for nephropathy in patient with diabetes mel-
litus type 2 [23]. In this study, only 25% of prediction models 
were excluded due to unavailability of prediction or outcome 
variables. Hueting et al. aimed to validate models for breast 
cancer patients in the Netherlands Cancer Registry (NCR) 
[24]. More in line with our results, 78% of the models were 
excluded due to variable unavailability. The limited avail-
ability of variables can be explained by the aim of registries 
to monitor and compare prostheses, and the need to limit the 
administrative burden. Conversely, these results can also indi-
cate that important variables are lacking in a registry when the 
variables show strong predictive value in multiple prediction 
models. In addition, all models in this study were also devel-
oped on registry data, and thus were presumably also based on 
a limited number of available variables. Because registries are 
designed to monitor prosthesis designs, the available variables 
do not necessarily have the strongest association possible with 
the outcome of interest, which may have affected the predic-
tive performance of the models. 

The included prediction models performed suboptimally 
in the Dutch THA population. The discriminative ability was 
insufficient in 3 out of 4 models. In addition, the calibration 
plots provide a visual interpretation of how well predicted 
probabilities align with observed probabilities across the 
range of predictions. The models provided well-calibrated 
probabilities within a narrow range of predicted probabilities. 
For example, the model predicting revision for dislocation 
within 6 months accurately predicted risks below 2%. How-
ever, within the lower well-calibrated range, it is unlikely that 
a patient and surgeon jointly would decide to refrain from 
surgery based on this prediction. A good calibration in higher 
ranges of probabilities is therefore important as this may 
affect decision-making. Therefore, understanding model per-
formance in practice is crucial, as poorly calibrated prediction 
models can result in incorrect and potentially harmful clinical 
decisions [16]. Even if a model appears to be well calibrated 
and shows good discrimination, this does not necessarily 
imply it will have added benefit in clinical practice [26]. 

Models with poor performance are not easily improved. 
One factor affecting a model’s predictive ability is a differ-
ent prevalence of the outcome in development and validation 
cohorts. To minimize this effect, the model can be recalibrated 
by adjusting the intercept or through logistic recalibration. 
Logistic recalibration refers to the updating of the original 
regression coefficients with new data to adjust the equation 
to local and contemporary circumstances [27,28]. Recalibra-
tion can be particularly useful to correct miscalibration of the 
predicted probabilities, when there is general over- or under-
estimation of risks. 

In our study, ASA score was distributed differently in the 
LROI data set compared with the development cohort. This 
discrepancy may be explained by differences in background 
morbidity, variations in access to surgery, and scoring dif-
ferences [29]. The difference in ASA distribution may have 
prevented perfect calibration of LROI data, even after apply-
ing recalibration. Besides intercept updating and logistic reca-
libration, other updating methods are available to improve 
existing prediction models to better suit other populations. 
These methods include adding more predictors and/or re-esti-
mating predictor coefficients [17]. Opinions on whether model 
updating is appropriate in external validation differ among 
researchers [9]. Some argue that changing or adding predic-
tors is essentially constructing a new prediction model, which 
in turn requires internal and external validation. Furthermore, 
it can also be questioned whether extending an existing model 
to improve poor performance is favorable over developing an 
entirely new model. Nonetheless, even if models’ performance 
would have been good, clinical utility is not guaranteed and 
remains to be investigated in clinical impact evaluation [27]. 

Limitations
The definitions of some predictors differed between the data 
sets underlying the development and external validation 
models. The definition of type of fixation and approach were 
not identical, which may have affected the model performance 
[30]. Harmonization of variables and definitions across joint 
registries is currently an important topic [31,32], which will 
positively influence the feasibility of using registry data for 
validation of models in different countries. Other factors that 
may affect predictive performance and may limit generaliz-
ability of prediction models to other settings are differences 
in healthcare systems, time period in which patients were 
treated, and differing treatment strategies between countries, 
for example, differences in THA approach or in the preferred 
type of fixation [33].

Conclusion
Registry data can be used for external validation of predic-
tion models, although it is heavily reliant on the availability of 
predictors and outcomes in the registry. External validation of 
the 4 models resulted in suboptimal predictive performance in 
the Dutch population.
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In perspective, prediction models should be externally vali-
dated to assess their performance in new settings before they 
are implemented in clinical practice, in order to prevent incor-
rect predictions. To strengthen the utility of registry data for 
future prediction models, efforts could focus on incorporating 
additional relevant predictors and outcomes within registries. 
This will improve both model development and external vali-
dation efforts and help refine predictive accuracy.
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