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Background and purpose — Artificial intelligence (AI) 
has the potential to aid in the accurate diagnosis of hip frac-
tures and reduce the workload of clinicians. We primarily 
aimed to develop and validate a convolutional neural net-
work (CNN) for the automated classification of hip fractures 
based on the 2018 AO-OTA classification system. The sec-
ondary aim was to incorporate the model’s assessment of 
additional radiographic findings that often accompany such 
injuries.

Methods — 6,361 plain radiographs of the hip taken 
between 2002 and 2016 at Danderyd University Hospital 
were used to train the CNN. A separate set of 343  radio-
graphs representing 324 unique patients was used to test the 
performance of the network. Performance was evaluated 
using area under the curve (AUC), sensitivity, specificity, 
and Youden’s index.

Results — The CNN demonstrated high performance in 
identifying and classifying hip fracture, with AUCs ranging 
from 0.76 to 0.99 for different fracture categories. The AUC 
for hip fractures ranged from 0.86 to 0.99, for distal femur 
fractures from 0.76 to 0.99, and for pelvic fractures from 
0.91 to 0.94. For 29 of 39 fracture categories, the AUC was 
≥ 0.95.

Conclusion — We found that AI has the potential for 
accurate and automated classification of hip fractures based 
on the AO-OTA classification system. Further training and 
modification of the CNN may enable its use in clinical set-
tings.

Hip fractures are prevalent in the elderly and are associated 
with increased morbidity and mortality [1,2]. Traditional 
imaging techniques like radiographs often suffice for diag-
nosis; however, MRI and CT scan are necessary when radio-
graphs are inconclusive or when a fracture is suspected despite 
normal radiographic results [3]. Accurate and timely diagnosis 
of a hip fracture is paramount, especially in settings where 
experienced radiologists are not readily available to interpret 
plain radiographs [4]. This is especially crucial for hip frac-
ture classification, as the correct implant type hinges on the 
diagnosis. In this context, computer-aided diagnosis (CAD) 
systems have the potential to assist clinicians in making accu-
rate diagnoses. 

Machine learning (ML) is an artificial intelligence technol-
ogy where computers learn from data to spot patterns and 
solve problems. Deep learning (DL), a specialized branch of 
ML, uses layers of processing, similar to our brain’s neurons, 
to analyze complex data. This technology shines in tasks like 
examining radiographs to identify fractures. Some studies [5,6] 
have shown that DL, and in particular a type called convo-
lutional neural network (CNN), can improve the accuracy of 
fracture detection. This advancement could potentially ease the 
workload of clinicians and reduce the dependence on costly 
imaging tests, as highlighted in some previous studies [7,8].

Previous work has applied DL to fractures such as those of 
the ankle, wrist, and knee, with favorable outcomes [9,10]. 
Recent studies [11-14] have explored various aspects of hip 
fracture classification, including the application of deep learn-
ing techniques; yet a comprehensive approach integrating 
the complexities of real-world scenarios such as radiological 
comorbidities, joint arthritis, tumors, and medical implants 
remains a challenge. 

Our study aims to develop a CNN model for the AO-OTA 
2018 Classification system [15] that we have extended with 
extra classes of clinically relevance.
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Methods
Study design
This cross-sectional validation study evaluates a diagnostic 
method based on a neural network analyzing retrospectively 
collected radiographic examinations of the hip joint for both 
the presence and type of fracture. Radiographic series of the 
hip taken between 2002 and 2016 were extracted from Dan-
deryd University Hospital’s Picture Archiving and Communi-
cation System (PACS) in Stockholm, Sweden. Random sub-
sets of image series were curated, including both images anno-
tated with phrases by radiologists that suggest potential frac-
tures and those without such indications. A weighted selection 
process was employed to ensure a balanced representation of 
images with fractures and those without. These images were 
then uploaded to a cloud-based server, facilitating the use of 
the AO-OTA 2018 classification system for image analysis on 
any computer. To enhance the transparency and reproducibil-
ity of our research, we adhered to the guidelines set forth by 
the Transparent Reporting of a multivariable Prediction model 
for Individual Prognosis Or Diagnosis (TRIPOD) throughout 
the design, analysis, and reporting of our study [16]. 

Inclusion and exclusion criteria
Inclusion criteria. Pelvic and hip radiographs from patients 
with both trauma and non-trauma protocols were included. 
Projections were not standardized and there was no patient 
overlap between the training and test sets.

Exclusion criteria. Radiographs with open epiphyses were 
rejected. Radiographs taken as follow-up of patients within 3 
months were excluded to prevent the network from processing 
duplicate images (Figure 1).

Classification method
The AO-OTA fracture and dislocation classification system 
categorizes fractures by bone segments and morphology 

based on a hierarchy of trauma energy and treatment difficulty 
[15]. Figure 2 shows some of the cases in our dataset classified 
according to the AO-OTA classification system. 

Fracture classifications were strategically merged when 
treatment modalities converged, simplifying the dataset with-
out compromising clinical relevance. Classes A12 and B3, 
as well as A22, A23, and A33 fractures, were combined due 
to their common treatment approach. Displaced B3 fractures 
were specifically grouped due to their unique treatment con-
siderations. These groupings followed standard clinical pro-
tocols, as substantiated by existing literature and guidelines 
[17-19]. To enhance the clinical applicability of the model, we 
also incorporated custom modifiers for specific AO classes, 

Excluded radiographs because of 
revisit during follow-ups within 3 months

n = 76,582 (13,454 patients)

Eligible examinations for random inclusion
n = 27,468 (19,478 patients)

Excluded radiographs because of
open epiphysis or poor image quality

n = 22 (20 patients)

Training set
n = 6,361

(5,797 patients)

Validation set
n = 212

(195 patients)

Test set
n = 343 

(324 patients)

Radiographic examinations of the hip and pelvis
taken between 2002 and 2016 extracted from 
Danderyd University Hospital’s picture archive

n = 104,072 (32,952 patients) 

Figure 1. Flow diagram for study inclusion and exclusion.

Figure 2. Examples of hip fractures classified by AO-OTA classification 
system.
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including “displaced,” “trochanter major,” and “long minor” 
subcategories to capture additional clinically relevant details. 
We defined “displaced” as fractures with more than 30 degrees 
of angulation and more than 2 cm of shortening, “trochanter 
major” as fractures with separated trochanter major, and “long 
minor” as fractures with the trochanter minor segment extend-
ing 2 cm or more below the distal limit of the fragment.

Data sets 
Training set. The training dataset, encompassing 6,361 
images (5,797 unique patients), was rigorously labeled for the 
presence of fractures, osteoarthrosis, and other pathologies 
such as tumors and implants. This initial classification, con-
ducted by medical students under the senior author‘s supervi-
sion, was further refined through a review process involving a 
senior orthopedic surgeon for ambiguous cases. Active learn-
ing principles guided the selection of cases for the network‘s 
calibration, where it was progressively trained on images with 
both high likelihood and high ambiguity of fractures. Discrep-
ancies between the network’s predictions and the initial labels 
prompted a thorough re-evaluation, leading to reclassification 
where necessary to ensure the accuracy of the training dataset, 
critical for the effectiveness of the subsequent CNN model 
training.

Test set. A set of 343 exams (324 unique patients) was used 
as the final test to assess the network’s performance. There 
was no image overlap between the test and training datasets. 
2 experienced senior orthopedic surgeons, blinded to the net-
work’s predictions and initially independent of each other, 
classified the test set. Images with differing classifications 
were revisited, and consensus was reached after mutual dis-
cussion.

Neural network setup
A supervised learning method was employed to train a 
39-layer ResNet CNN architecture as our network. This archi-
tecture used batch normalization for each convolutional layer 
and adaptive max pool. The training was divided into multiple 
sessions with different regularizations for overfitting control. 
The network was trained in 2 phases: regular dropout without 
any noise, and dropout with added white noise and random 
block dropout. The learning rate was reset between sessions.

The AI model developed the versatility to identify over 1,000 
diagnostic categories, spanning multiple anatomical regions. 
For the purpose of our focused analysis on hip fractures, the 
model was trained on 213 hip-specific categories, including 
25 that were aggregated to facilitate a more streamlined evalu-
ation process. Our reporting methodology intentionally omits 
the distinction between left- and right-sided fractures, opting 
to record a fracture if it was discernible on either side. More-
over, we have incorporated additional pathologies pertinent to 
hip conditions such as implants, avascular necrosis, and osteo-
arthritis into our assessment. This targeted reporting strategy 
was governed by the depth of data available for each category 

and is comprehensively represented in the study’s tabulated 
findings.

Input images 
The dataset of images and their labeled outcomes were intro-
duced to the network individually. Each radiograph was auto-
matically cropped to the active image area (removing any 
black border) and resized to a maximum of 256 pixels. Pad-
ding was added to the rectangular image, resulting in a square 
format of 256 x 256 pixels for input to the network. 

Statistics
Network performance was assessed using the area under the 
curve (AUC) as the primary outcome measure, with 95% con-
fidence intervals (CIs). Sensitivity, specificity, and Youden’s 
index were secondary outcome measures. The proportion of 
correctly detected fractures was estimated using AUC, with 
frequency-weighted AUC calculated for summarized groups 
of categories: 

AUC weighted =
∑i=1         AUCini

categories

∑i=1         ni
categories

An AUC value of 1 indicates perfect prediction, while an 
AUC of 0.5 represents no better prediction than random chance. 
Generally, an AUC of 0.7–0.8 is considered acceptable, 0.8–0.9 
is considered good or very good, and ≥ 0.9 is considered out-
standing [20]. Youden’s Index (J), defined as J = sensitivity + 
specificity – 1, is another measure used in conjunction with the 
receiver operating curve and ranges from 0 to 1.

Given the numerous categories, a weighted mean of each 
measure was presented, incorporating all subclasses. For 
example, A-types included not only the A-type but all avail-
able subgroups in one measure. Weighting was based on the 
number of positive cases, minimizing the influence of small 
categories that may perform well by chance on the weighted 
mean.

In our study, we quantified the agreement between the 2 
senior surgeons on the classification of hip fractures using 
Cohen’s kappa. This statistical measure was critical, as it 
highlighted areas where the surgeons’ assessments diverge, 
necessitating consensus discussions to ensure reliability in 
the test set evaluations. The network was implemented and 
trained using PyTorch (v. 1.10; https://pytorch.org/), and sta-
tistical analysis was conducted using R (4.0.0; R Foundation 
for Statistical Computing, Vienna, Austria).

Ethics, data sharing, funding, and disclosures
The research was approved by the Swedish Ethical Review 
Authority (dnr: 2014/453-31/3). This project was supported 
by grants provided by Region Stockholm (ALF project) that 
have enabled both research time and computational resources 
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tion of data or in writing the manuscript. Open access fund-
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Results
Fracture categories
In the test set, there were 188 cases (55%) and in the training 
set 3,223 cases (49%). Hip fractures were the most common 
type in both sets, with 156 cases (45%) in the test set and 
2,786 cases (42%) in the training set. Roughly half of exam-
ined cases in both the test set and training set had a fracture 
(Table 1). 

4 cases. In general, the network performed well, with 29 out 
of 39 categories achieving an AUC ≥ 0.95 (Table 3). The sen-
sitivity and specificity for detecting hip fractures were 96% 
and 94%, respectively. The AUC was 0.99, CI 0.98–0.99. The 
network performed well across different AO-OTA classes and 
fracture descriptors, with high sensitivity and specificity. This 
is particularly important in the merged groups, where treat-
ment decisions are influenced by the accurate identification 
of fracture types. In the process of developing our AI model, 
we found that employing a detailed categorization scheme 
wherein a multitude of specific fracture types were indi-
vidually identified, contrary to expectations, optimized the 
model’s learning process. This counterintuitive approach is 
predicated on the principle that detailed, contextual learning 
targets enhance the network’s ability to prioritize and learn 

Table 1. Distribution of cases in training and test sets. Values are count (%) within the 
same category for each set.

  Test set   Training set
 Yes Maybe No Yes Maybe No

All fractures 188 (55) 4 (1.2) 151 (44) 3,223 (49) 89 (1.4) 3,249 (49)
Hip 156 (45) 2 (0.6) 185 (54) 2,786 (42 20 (0.3) 3,742 (57)
 A 72 (21) 1 (0.3) 270 (79) 1,365 (21 8 (0.1) 5,188 (79)
 .1 34 (9.9) 1 (0.3) 308 (90) 694 (11 8 (0.1) 5,859 (89)
 ..1 9 (2.6) 1 (0.3) 333 (97) 91 (1.4 8 (0.1) 6,462 (98)
 ..2 11 (3.2)  332 (97) 326 (5.0  6,235 (95)
 …displaced 2 (0.6)  341 (99) 125 (1.9  6,423 (98)
 …trochanter major 3 (0.9)  340 (99) 197 (3.0  6,351 (97)
 ..3 14 (4.1)  329 (96) 277 (4.2  6,284 (96)
 …displaced 9 (2.6)  334 (97) 184 (2.8  6,364 (97)
 …trochanter major 8 (2.3)  335 (98) 154 (4.0  3,706 (96)
 .2 23 (6.7)  320 (93) 414 (6.3  6,147 (94)
 ..2 16 (4.7)  327 (95) 306 (4.7  6,255 (95)
 …displaced 9 (2.6)  334 (97) 220 (3.4  6,328 (97)
 …long minor 5 (1.5)  338 (98) 122 (1.9  6,426 (98)
 ..3 7 (2.0)  336 (98) 108 (1.6  6,453 (98)
 .3 15 (4.4)  328 (96) 257 (3.9  6,304 (96)
 ..1 3 (0.9)  340 (99) 41 (0.6  6,520 (99)
 ..2 1 (0.3)  342 (100) 26 (0.4  6,535 (100)
 ..3 11 (3.2)  332 (97) 190 (2.9  6,371 (97)
 …diaphysis 4 (1.2)  339 (99) 60 (0.9  6,488 (99)
 …trochanter major 8 (2.3)  335 (98) 115 (1.8  6,233 (98)
B 84 (24) 1 (0.3) 258 (75) 1429 (22) 12 (0.2) 5,104 (78)
 .1 40 (12) 1 (0.3) 302 (88) 741 (11) 9 (0.1) 5,811 (89)
 ..1 5 (1.5)  338 (98) 215 (3.3) 2 (0.0) 6,344 (97)
 ..2 3 (0.9) 1 (0.3) 339 (99) 69 (1.1) 6 (0.1) 6,486 (99)
 ..3 32 (9.3)  311 (91) 456 (7.0) 1 (0.0) 6,104 (93)
 .2 40 (12)  303 (88) 614 (9.4) 3 (0.0) 5,944 (91)
 ..1 10 (2.9)  333 (97) 207 (3.2) 2 (0.0) 6,352 (97)
 …displaced 8 (2.3)  335 (98) 156 (2.4)  64,05 (98)
 ..2 18 (5.2)  325 (95) 177 (2.7)  6,384 (97)
 …displaced 15 (4.4)  328 (96) 169 (2.6)  6,392 (97)
 ..3 12 (3.5)  331 (96) 229 (3.5) 1 (0.0) 6,331 (96)
 …displaced 10 (2.9)  333 (97) 202 (3.1)  6,359 (97)
 .3 4 (1.2)  339 (99) 74 (1.1)  6,487 (99)
Femur 14 (4.1) 1 (0.3) 328 (96) 39 (0.6)  6,309 (99)
Acetabulum 1 (0.3)  342 (100) 89 (1.4) 4 (0.1) 6,455 (99)
Pelvis 18 (5.2) 1 (0.3) 324 (94) 291 (4.4) 15 (0.2) 6,242 (95)

Most common anatomical distributions of fractures based on the AO-OTA classification. 
The letter corresponds to fracture type, first number to group, second number to subgroup. 

The most common AO-OTA fracture type 
was the trochanteric region fracture. In this 
category, the A1 and the A2 groups and 
subgroups were distributed evenly in both 
training and test sets. However, both were 
almost 3 times larger than the A3 groups in 
the training set and twice the size of the A3 
group in the test set. The patient distribu-
tion observed in our study aligns with estab-
lished patterns documented within the wider 
hip fracture literature [18]. 

Inter-rater reliability analysis using 
Cohen’s kappa demonstrated a high degree 
of agreement between the senior orthope-
dic surgeons for the classification of hip 
fractures. The kappa value for identifying 
fractures was 0.91 (0.87–0.96), indicating 
excellent agreement. For base hip fractures 
and category A fractures, kappa values were 
0.93, CI 0.89–0.97, and 0.88, CI 0.82–0.95, 
respectively, reflecting almost perfect agree-
ment. Disparities arose in specific subcate-
gories, with moderate agreement observed 
(kappa: 0.59 for A1; CI 0.44–0.73). Particu-
larly challenging were subcategories such as 
trochanter major classifications and certain 
displaced fractures (some subgroups of A2 
and A3), where kappa values occasionally 
dropped below 0.30, necessitating case-by-
case consensus to resolve discrepancies. A 
detailed table (Table 2, see Appendix) pro-
viding a comprehensive breakdown of the 
interobserver Cohen’s kappa values across 
all fracture subcategories is included in the 
Appendix accompanying this article.

Network performance
In the test set, the evaluation threshold for 
fracture categories was set to a minimum of 
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from a diversified feature set. Thus, while clinically related 
categories were combined for interpretive clarity, the AI was 
trained with a wide array of distinct categories to sharpen its 
predictive accuracy. In the merged A12 or B3 group, the sen-
sitivity and specificity were 91% and 95%, respectively, while 
the AUC was 97%, CI 0.95–0.98. In the merged A22, A23, or 
A33 group, the sensitivity was 88%, the specificity was 92%, 
and the AUC was 0.94%, CI 0.91–0.96. The network also per-
formed well in identifying fractures within custom modified 
subcategories. For the “displaced,” “trochanter major,” and 
“long minor” fracture subcategories, the combined sensitiv-
ity and specificity were high, with values generally exceed-
ing 90%. The AUC for these categories ranged from 0.93 to 
0.97, with 95% confidence intervals typically within the range 
of 0.90 to 0.99. These results indicate that the network per-
formed well in identifying the fracture types within these cru-
cial merged groups and custom modified subgroups, which is 

essential for ensuring appropriate treatment and patient care. 
Examples of misclassified cases are illustrated in Figures 3 
and 4 in the Appendix. 

Other fractures were also detected, such as femur diaphy-
seal fractures and pelvic fractures (Table 4). The sensitivity 
ranged from 75% to 100%, and the specificity ranged from 
78% to 94%. The AUC values ranged from 0.87 to 0.95, indi-
cating good performance in detecting these fractures. 

Discussion

We aimed to train and evaluate an AI-based CNN to iden-
tify and classify hip fractures according to the AO-OTA 
2018 classification system. The network demonstrated high 
sensitivity and specificity in detecting fractures across dif-
ferent anatomical locations and AO-OTA classes. It showed 
promising results for identifying fracture types within crucial 
merged groups, which is of great importance for determining 
the appropriate treatment approach and improving patient out-
comes. Although the study primarily focused on hip fractures, 
resulting in fewer cases of femoral shaft and pelvis fractures, 
the network still showed reasonable performance in these 
areas. The results tended to vary more within an AO-OTA 
category and between different bone segments than they did 
between different categories. This variation may be attributed 
to factors such as insufficient training cases, with categories 
containing fewer cases often underperforming compared with 
more common categories. 

Previous studies regarding DL in trauma orthopedics have 
reported high AUC values, which may seem too ideal as not all 
fractures correspond perfectly to a single class, and borderline 
cases leave room for different interpretations and classifica-
tions [11,21,22]. Accuracy was a major comparison measure-
ment in these studies, but it is directly dependent on the distri-
bution of the test dataset. Some studies removed or excluded 
images that were difficult to classify, which may introduce 
selection bias and inflate performance metrics [12,13].

Table 4. Network performance on femoral shaft and pelvic fractures 
(N = 343)

   Sensitivity Specificity Youden’s
Site a n  (%)  (%) J AUC (CI)

Diaphyseal
   femur 14 86 94 0.80 0.95 (0.90–0.99)
A 9 89 85 0.74 0.94 (0.87–1)
.1 8 75 94 0.69 0.88 (0.75–1)
B 4 100 78 0.78 0.92 (0.82–1)
Pelvis      
A 18 83 80 0.63 0.86 (0.77–0.96)
.2 18 83 81 0.64 0.87 (0.77–0.96)
..2 17 82 85 0.67 0.86 (0.76–0.96)

a See Table 1
n =  the number of fractures observed by the reviewers.

Table 3. Network’s results for hip fractures (N = 343)

   Sensitiv- Specific- Youden’s
Site a n  ity (%)  ity (%) J AUC (CI)

Hip  156 96 94 0.89 0.99 (0.98–0.99)
A (Inter-
   trochanteric) 72 92 93 0.85 0.98 (0.96–0.99)
.1 34 91 83 0.74 0.93 (0.89–0.96)
..1  9 100 85 0.85 0.95 (0.91–0.99)
..2 11 100 83 0.83 0.95 (0.91–0.99)
..3 14 100 88 0.88 0.96 (0.93–0.98)
…displaced 9 100 87 0.87 0.94 (0.90–0.97)
…troch. major 8 100 86 0.86 0.93 (0.88–0.98)
.2 23 100 90 0.90 0.97 (0.95–0.99)
..2 16 100 90 0.90 0.96 (0.93–0.98)
…displaced 9 100 88 0.88 0.94 (0.91–0.98)
…long minor 5 100 86 0.86 0.94 (0.89–0.99)
..3 7 100 90 0.90 0.95 (0.92–0.99)
.3 15 93 83 0.76 0.94 (0.88–0.99)
..3 11 91 85 0.76 0.91 (0.84–0.98)
…displaced 4 100 90 0.90 0.96 (0.92–1)
…troch. major 8 100 83 0.83 0.92 (0.88–0.97)
B (Femoral 
    neck)  84 99 97  0.96 (0.99–1)
.1 40 98 87 0.85 0.94 (0.91–0.96)
..1 5 100 81 0.81 0.93 (0.86–0.99)
..3 32 97 86 0.83 0.94 (0.92–0.97)
.2 40 98 85 0.82 0.93 (0.91–0.96)
..1 10 100 75 0.75 0.86 (0.80–0.91)
…displaced 8 100 81 0.81 0.89 (0.84–0.94)
..2 18 100 78 0.78 0.91 (0.88–0.95)
…displaced 15 93 85 0.78 0.92 (0.88–0.96)
…3 12 100 80 0.80 0.90 (0.86–0.95)
…displaced 10 100 87 0.87 0.93 (0.89–0.96)
.3 4 100 87 0.87 0.95 (0.89–1)
Merged groups      
A12 or B3 15 93 86 0.79 0.94 (0.90–0.98)
A22, A23, 
    or A33 34 97 91 0.88 0.95 (0.91–0.98)
B displaced 65 98 96 0.95 0.99 (0.99–1)

a See Table 1
n =  the number of fractures observed by the reviewers..
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Different users may have varying classification interpreta-
tions, and radiographic images contain more information than 
a single classification system can cover. Our study used a data-
set of 6,361 images, which is larger than most studies in this 
field [11,14]. However, most published studies, including this 
study, were conducted in a single institution, potentially limit-
ing generalizability.

Establishing a ground truth is a main challenge in this field, 
and several methods can be used, such as involving experts in 
orthopedics and musculoskeletal radiology or utilizing MRI 
or CT scans. Nevertheless, even with these resources, differ-
ent image interpretations can still pose challenges [11,21]. We 
fully acknowledge that CT imaging could serve as a superior 
gold standard for fracture classification. However, due to prac-
tical considerations such as the extensive time required for CT 
review, the absence of routine CT usage in Swedish hip frac-
ture treatment protocols, budgetary constraints, and the vast 
number of exams, we did not include CT in our classification 
process. Despite these challenges, the neural network demon-
strated satisfactory performance, suggesting an intrinsic capa-
bility to discern and learn from the data provided.

The use of AI may have some negative consequences, such 
as automation bias, which refers to overreliance on clinical 
decision support systems [10]. The potential downside is that 
clinicians may become too dependent on AI-based systems, 
affecting their judgment or learning ability. The “AI black 
box” issue arises as we do not know which features were used 
by the machine to produce the prediction [7,8,23], complicat-
ing the incorporation of AI into everyday clinical settings, and 
then there is the matter of accountability using complex AI-
based systems. 

Strengths and limitations
A key strength of this study was the inclusion of images with 
distractions, such as implants, older fractures, and pathologies 
like tumors, reflecting a more realistic clinical setting. However, 
this approach also proved disadvantageous, as having more out-
come categories results in fewer cases in each category. 

We did not conduct a direct comparison between network 
performance and clinicians’ performance. The study’s perfor-
mance may have been influenced by factors such as using a 
less controlled environment for training and testing compared 
with other previous studies [22]. We believe striving for per-
fect network accuracy may not translate well into real-world 
settings and could introduce selection bias.

One limitation is the lack of implementation of other imag-
ing modalities such as MRI or CT, which could have aided the 
research team in interpreting the images. The limited timespan 
and the lack of prospectively collected data, where periopera-
tive classification of the fractures is considered the gold stan-
dard, are also limitations. Furthermore, the training set was 
evaluated by a medical student who may have lacked exper-
tise, and the absence of double-checking the training set likely 
lowered the network’s performance. 

Another limitation was the lack of patient medical history, 
concurrent medications, radiographic referrals, and symptoms 
like pain location and physical examination, which could help 
radiologists and other clinicians. However, this also could 
yield a more unbiased evaluation because no other factors, 
other than the images and radiologists’ reports, could influ-
ence the classification results.

Finally, external validity is a limitation factor, as all images 
on which the network trained were collected over a decade 
from only 1 hospital in Stockholm, Sweden. This could pose 
limitations, as image interpretation and fracture classification 
could differ in other hospitals, cities, and countries using dif-
ferent radiographic equipment and image file formats.

Conclusions
The aim of this study was to develop and validate a convo-
lutional neural network (CNN) for the automated classifica-
tion of hip fractures based on the 2018 AO-OTA classification 
system. The results demonstrated that the CNN performed 
well, with AUCs ranging from 0.76 to 0.99 across different 
fracture categories, indicating high accuracy and reliability in 
classification. These findings suggest that, with further train-
ing and modification, the CNN can be utilized effectively in 
clinical settings to aid in the interpretation of plain hip radio-
graphs. 

Clinical applications and future studies
The AI-based CAD system developed in this study shows 
promise for improving diagnostic accuracy and efficiency 
in clinical settings, especially where radiologist availabil-
ity is limited. Future studies should focus on validating the 
AI model in diverse clinical environments and evaluating its 
impact on clinician performance. Integrating AI tools with 
clinical expertise could enhance diagnostic workflows and 
support more informed treatment planning.
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Appendix

Figure 3. A series of radiographic images classified under group 31A. Despite the advanced capabilities of our AI model, these images highlight 
instances where the system did not accurately classify the fractures. Each case in this collection was incorrectly categorized by the network, 
underscoring the challenges and complexities inherent in fracture identification. The inclusion of these examples serves to illustrate the current 
boundaries of AI accuracy and the need for ongoing model training and improvement.
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Table 2. Inter-observer agreement between the 
2 orthopedic surgeons

 Cohen’s kappa (CI)

General fracture 0.91 (0.87 to 0.96)
Hip
Base 0.93 (0.89 to 0.97)
 A 0.88 (0.82 to 0.95)
 .1 0.59 (0.44 to 0.73)
 ..1 0.56 (0.25 to 0.88)
 ..2 0.38 (0.13 to 0.63)
 .. → displaced 0.28 (–0.16 to 0.72)
 .. → trochanter major 0.14 (–0.13 to 0.41)
 ..3 0.33 (0.10 to 0.56)
 .. → displaced 0.42 (0.09 to 0.75)
 .2 0.50 (0.32 to 0.69)
 ..2 0.36 (0.13 to 0.58)
 .. → displaced 0.30 (0.02 to 0.57)
 .. → long minor 0.59 (0.23 to 0.96)
 ..3 0.27 (–0.04 to 0.58)
 .3 0.61 (0.40 to 0.82)
 ..1 0.66 (0.23 to 1.00)
 ..2 0.00 (0.00 to 0.00)
 ..3 0.44 (0.18 to 0.70)
 .. → diaphysis 0.14 (–0.13 to 0.41)
 .. → trochanter major 0.14 (–0.12 to 0.41)
 B 0.96 (0.93 to 0.99)
 .1 0.82 (0.73 to 0.92)
 ..1 0.89 (0.67 to 1.00)
 ..2 0.49 (0.07 to 0.92)
 ..3 0.80 (0.69 to 0.91)
 .2 0.73 (0.61 to 0.84)
 ..1 0.32 (0.08 to 0.56)
 .. → displaced 0.21 (–0.04 to 0.46)
 ..2 0.23 (0.00 to 0.46)
 .. → displaced 0.19 (–0.06 to 0.44)
 ..3 0.63 (0.43 to 0.83)
 .. → displaced 0.62 (0.38 to 0.86)
 .3 0.36 (–0.01 to 0.72)

Figure 4. A set of radiographic images from group 31B. These particular cases represent scenarios where the AI model’s classification did not 
align with the established gold standard. The images are provided to demonstrate the limitations encountered by the network, reflecting the 
sophisticated nature of fracture classification. Reviewing these misclassified cases offers valuable insights into the model’s performance and 
informs future directions for algorithmic enhancements.


