Clodronate reduces plate osteopenia in the rabbit

Markku T Nyman¹, Pekka Paavolainen¹, Teddy Holmström², Risto Penttinen³ and Markku Verkasalo⁴

An osteosynthesis with a four-hole AO/ASIF-DCP plate was performed on the right tibia of 40 rabbits. Clodronate (50 mg/kg s.c.) was given once a week, resulting in a mean bone concentration of 509 pg/g in 2 hours. Plate fixation caused a decrease in mean net cross-sectional area of compact cortical bone of 17 percent at 9 weeks and 46 percent at 18 weeks. This resulted from bone resorption in bone under the plate, from pronounced cavitation in the plated bone (about 5 percent of cortical bone area at 9 weeks and 15 percent at 18 weeks), and from the fact that the medullary space was increased by 15 percent at 18 weeks. The total cross-sectional area of the diaphysis was increased by 31 percent at 9 weeks and by 17 percent at 18 weeks.

Clodronate treatment reduced cortical porosity to about half of the mean values in the placebo group. Clodronate increased both the calcium content in the retained bone and the cross-sectional area of compact cortical bone, but induced only an insignificant increase in the area of periosteal new bone. Clodronate treatment seems not to be contraindicated in conjunction with rigid osteosynthesis, and may even slow down the osteopenic response occurring under the rigid plate.

¹The Orthopedic Hospital of the Invalid Foundation, Helsinki, ²Department of Pathology, University of Helsinki, Helsinki, ³Department of Biochemistry, University of Turku, Turku, ⁴Helsinki University, Finland

Correspondence: Dr. Markku T Nyman, Department of Surgery, Tampere University Hospital, Teiskontie 35, SF-33520 Tampere, Finland. Tel +358-311 561 1. Fax -311 56164
Submitted 91-12-29. Accepted 92-07-19

Clodronate (dichloromethylene biphosphonate, CI₂MBP) is a second generation biphosphonate which hinders osteoclastic bone resorption. The effect is dose dependent and is mediated by cell damage and a reduction in the number of osteoclasts that excavate the bone surfaces upon which clodronate is first absorbed (Flanagan and Chambers 1989). Clodronate has no inhibitory effect on osteoid formation or osteoid mineralization (Bauer et al. 1986, Schenk et al. 1986, Nilsson et al. 1990). Biphosphonates reduce the bone loss resulting from immobilization (Cates et al. 1971, Michael et al. 1971).

In theory, the use of pharmaceutical agents to inhibit osteoclastic activity may be one way to minimize the harmful effects of rigid plate fixation. For this reason we wanted to evaluate whether clodronate therapy has any beneficial or untoward effects with respect to the osteopenia occurring during stress protection.

Material and methods

40 male New Zealand white rabbits aged 11 months and weighing 2.7-4.7 kg were operated on under general anesthesia induced with Rombun vet 0.25 mL/kg and Fentanyl 0.1 mL/kg s.c. A stainless steel (AISI 316L) four-hole dynamic plate (AO/ASIF-DCP) was applied to the anterolateral surface of the midshaft of the right tibia. The periosteum was left intact. The distal end of the plate was placed proximal to the tibiofibular junction. The plate was fixed with 4 cortical screws after drilling and pretapping of the screw-holes (Paavolainen et al. 1978, Släités et al. 1978). The plate was 35 mm long, 7 mm wide and 1.5 mm thick. Neither a fracture nor an osteotomy on the bones was performed. An identical incision and closure on the left leg, leaving the left tibia intact, was performed as a sham operation. During the follow-up, the animals had free access to fully balanced food pellets (Evos K3, Tamro, Sweden).

Throughout the follow-up the animals were given clodronate subcutaneously, in a dose of 50 mg/kg, or only 0.9% NaCl injections. The first injection was given during the operation, and the last one week before the analysis.

To study matrix production in cortical bone, the animals were given 24 μCi 3H-L-Proline (specific activity 100 Ci/mmol; Amersham, England) intramuscularly 2 days before analysis (Läftman et al. 1989). In the analysis, the hydroxyproline was extracted from a cortical bone sample, and the ³H-proline activity was measured. The resultant specific activity of ³H in the
extract was beneath the level that could have been measured reliably (less than 1–2 percent of the background level).

All skin incisions healed primarily, and no wound infections occurred. 2 of the 40 legs which underwent surgery were eliminated from the study because of a fissure in the bone through a screw-hole. One was a clodronate rabbit, eliminated at 9 weeks, and the other was a placebo rabbit, eliminated at 18 weeks.

After 9 or 18 weeks, the animals were exsanguinated under general anesthesia induced with barbiturate (Hypnorm). Serum was collected by centrifuging the blood sample; it was then stored at −70 °C. Serum alkaline phosphatase activity (U/L), calcium concentration (mmol/L) and inorganic phosphate (mmol/L) were determined colorimetrically with commercially available assay kits from Boehringer Mannheim GmbH (alkaline phosphatase and calcium) and Merck Diagnostica (inorganic phosphate).

The right and left tibiofibular bones were dissected out, with the periosteum intact. Anteroposterior and lateral radiographs (Agfa-Gevaert, 42 kV, 16 mAs, FFD 1 m) were taken of both tibiae. The plates were removed from the right tibiae, and the specimens were scrutinized macroscopically.

3 cross-sections were cut perpendicularly to the bone axis with an osteotome. The cross-sectional samples for histological and biochemical analyses were taken from the right tibiae at the midpoints between the 4 screw-holes beneath the plate, and from the left tibiae. The specimens were obtained from corresponding levels of each pair of tibiae by holding the right and left tibia together during cutting.

The specimens for histological analysis were fixed in buffered 10% formalin, dehydrated in increasing concentrations of alcohol, defatted in xylene and embedded, but not decalcified, in methyl methacrylate and processed to methyl-methacrylate blocks by standard methods. During the hardening of the blocks, the osteotomized bone cylinders were laid on their osteotomized side on the bottom of block casts. 100-μm sections were cut with a milling bone saw (Laitz 1600, Germany) perpendicular to the tibial axis. The calcified sections were stained by using a Masson-Goldner-Trichrome staining (Goldner 1938).

The cross-sectional areas of the different bone structures in the cross-sections were measured from the right and left tibiae with a computer-aided planimeter (Apple II with graphics table):
1) the area of compact cortical bone, excluding new bone formation;
2) the area of the medullary cavity;
3) the area of subperiosteal new bone (immature woven bone), which included both mineralized and unmineralized (osteoid) bone;
4) the total area of resorption cavities in compact cortical bone;
5) the percentage porosity, calculated from the proportion of the total area of resorption cavities to the area of compact cortical bone;
6) the area of the diaphysis including the medullary space, the compact cortical bone and the periosteal new bone.

The discrimination between compact cortical bone and subperiosteal new bone was made on the basis of their characteristic structures and color: compact cortical bone was stained darker green, and subperiosteal new bone included areas of osteoid, which were stained red.

Specimens reserved for chemical analyses were stored at −70 °C. The cross-sections of the diaphysis included both the compact cortical bone and the subperiosteal new bone around it. The specimens were weighed, cut into pieces and lyophilized to constant dry weight. The hydroxyproline, calcium, phosphorus, hexosamines, RNA, and DNA contents were determined (Penttinen 1972). The contents were expressed as the net amount (mg) and concentration (mg/g dry weight). The relation of RNA to DNA was calculated as an index of the capacity of cells to synthesize protein.

Statistics
The multivariant analysis of variance was utilized to differentiate between the plated and control tibiae and between the clodronate and placebo specimens. No interaction was found between the grouping factors: the type of medication (clodronate or placebo), type of operation (plate fixation or no fixation), and the time of analysis. P-values over 0.05 were not considered significant.

Results
The rigid plating resulted in radiographically clearly observable local osteopenia. By 18 weeks, the cortex under the plate was about 50 percent thinner than that of the contralateral leg. Examination of the radiographs revealed no macroscopic difference in the morphology of the tibiofibular bones between the clodronate-treated and placebo groups.

Histologic evaluation
The typical remodeling changes related to rigid plating were evident after 9 weeks, and pronounced at 18
weeks. Bone resorption had progressed along the endosteal surface of the cortex, and new bone had formed subperiosteally beside the plate and diame-
trically opposite to it. In consequence, the cortical width under the plate had decreased, and both the average marrow diameter and the average external di-
aphyseal diameter had increased (Table 1). The resorp-
tion cavities within the cortex were clearly increased in size.

Histomorphometric analysis (Table 1)

In the placebo group, the porosity in compact cortical bone increased to a mean value of 5 percent of cortical bone area at 9 weeks, and to 15 percent at 18 weeks. The corresponding mean value for the unplated tibiae was less than 1 percent, and the differences between plated and unplated tibiae were significant ($P < 0.01$). In the clodronate-treated group, the porosity in cortical bone at 9 and 18 weeks was about half of that in the placebo group. Owing to the great interindividual vari-
ation, however, clodronate treatment could not be shown to induce a statistically significant improve-
ment in porosity.

At 18 weeks, the area of medullary space in the plated compared to the unplated tibiae had increased by 15 percent ($P < 0.05$). Clodronate therapy did not modify this.

In the placebo group, the area of compact cortical bone (excluding new bone formation) was smaller in the plated tibiae than in the unplated tibiae ($P < 0.01$). Clodronate therapy caused a significant increase in the amount of compact cortical bone in the plated tibiae ($P < 0.05$).

The amount of subperiosteal new bone (immature woven bone) was also significantly increased in plated tibiae ($P < 0.001$). Furthermore, the area of new bone formation in the plated tibiae was somewhat, but not significantly, increased by clodronate.

As a result of the above changes the mean cross-
sectional area of the plated tibiae (including the medullary space, the compact cortical bone and the periosteal new bone) was 31 percent greater at 9 weeks and 17 percent greater at 18 weeks ($P < 0.01$) compared to unplated tibiae. The cross-sectional area of the diaphysis in plated tibiae was somewhat, but not significantly, increased by clodronate.

Chemical analysis

The chemical composition of bone did not differ between the plated and unplated tibiae.

The concentrations of RNA and DNA, reflecting the cell concentration in bone, and the RNA to DNA ratio, reflecting the capacity of cells to synthesize protein, were at the same level in the bone tissue in the
fracture signifies local bone damage under the plate. The appearance of RAP in the bone without zone of disturbed blood supply to the bone (Perren et al. 1988). The formation of subperiosteal new bone greatly resembles cavitations in cortical bone connected with the formation of subperiosteal new bone might have resulted from hampered remodeling of new bone; remodeling of subperiosteal new bone was not measured in the present study. The results indicate, however, that new bone formation can occur subperiosteally, independently of resorption activity, and that the mediator mechanisms involved in new bone formation are not inhibited by clodronate. Although it retards the osteoclastic function, clodronate has no effect on osteoid mineralization (Bauer et al. 1986, Schenk et al. 1986, Nilsson et al. 1990).

Clodronate treatment induced no significant increase in the formation of subperiosteal new bone in the plated tibiae, although the values detected in the treated animals were somewhat higher. In the clodronate animals, a slight increase in the area of subperiosteal new bone might have resulted from hampered remodeling of new bone; remodeling of subperiosteal new bone was not measured in the present study. The results indicate, however, that new bone formation can occur subperiosteally, independently of resorption activity, and that the mediator mechanisms involved in new bone formation are not inhibited by clodronate. Although it retards the osteoclastic function, clodronate has no effect on osteoid mineralization (Bauer et al. 1986, Schenk et al. 1986, Nilsson et al. 1990).

As expected, plating did not change the quality of the cortical bone matrix, when measured by chemical parameters (Paavolainen et al. 1978). It must be stressed that the contents of matrix components were measured in relation to the dry weight of bone, not to the volume. The reduced calcium concentration in diaphyseal bone detected both under the plate and in the contralateral unplated tibia during follow-up reflects the high turnover rate of bone, which was counterbalanced by clodronate treatment. Determination of the calcium concentration in bone does not make it possible to evaluate the rate of mineral formation and resorption. Unfortunately, the dynamic analysis of collagen turnover by tritiated proline labeling failed for technical reasons. Information on dynamic collagen formation and mineralization therefore was not obtained.

The kinetics of disodium clodronate in rabbits has been studied after subcutaneous administration of disodium clodronate, 50 mg/kg, once a week. High concentrations in serum were obtained 1 hour after subcutaneous administration. The levels declined rapidly thereafter, giving an estimated half-life of about 1 hour. A remarkable amount of the drug administered

Table 3. The serum concentrations of calcium, inorganic phosphate (mmol/L) and the serum alkaline phosphatase activity (U/L) in the clodronate-treated and placebo-treated rabbits at 9 and 18 weeks after operation. Mean SD (n 10)

<table>
<thead>
<tr>
<th></th>
<th>Placebo Calcium</th>
<th>Clodronate Calcium</th>
<th>Placebo Phosphate</th>
<th>Clodronate Phosphate</th>
<th>Placebo Alkaline Phosphatase</th>
<th>Clodronate Alkaline Phosphatase</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 weeks treatment</td>
<td>3.6 0.2</td>
<td>3.5 0.2</td>
<td>1.4 0.2</td>
<td>1.3 0.2</td>
<td>116 26</td>
<td>119 39</td>
</tr>
<tr>
<td>18 weeks treatment</td>
<td>3.6 0.2</td>
<td>3.4 0.2</td>
<td>1.2 0.2</td>
<td>1.2 0.2</td>
<td>100 21</td>
<td>96 26</td>
</tr>
</tbody>
</table>

No difference between the clodronate and placebo groups

Discussion

The remodeling of bone under a rigid plate has been attributed to stress-shielding (Paavolainen et al. 1978, Woo et al. 1984) and to bone necrosis under the plate, irrespective of its rigidity (Vattolo 1986, Joerger 1987). The progression of porosity was rapid in our study. Furthermore, it was observed that the formation of cavitations in cortical bone connected with the formation of subperiosteal new bone greatly resembles the regional acceleratory phenomenon (RAP) of cortical bone (Frost 1989). RAP is known to be induced by bone injury, like a fracture or an osteotomy. It is known that under a plate there is a comparably large zone of disturbed blood supply to the bone (Perren et al. 1988). The appearance of RAP in the bone without fracture signifies local bone damage under the plate.

RAP is now considered a reparative response of bone to trauma, and must be distinguished from osteoporosis due to immobilization (Frost 1989). What is the role of osteoclastic inhibition in this setting?

Clodronate treatment slowed down the drastic remodeling of bone induced by the rigid plate; the volume of cortical compact diaphyseal bone was greater in clodronate-treated rabbits than in the placebo-treated animals. Furthermore, the increase in porosity induced by plate fixation may have been slowed down by clodronate, but the effect was not statistically significant. The increase in the volume of compact cortical plated bones in the clodronate animals is explained by the fact that clodronate specifically inhibits osteoclastic resorption of bone (Miller and Jee 1979, Schenk et al. 1986, Nilsson et al. 1990).

Clodronate treatment induced no significant increase in the formation of subperiosteal new bone in the plated tibiae, although the values detected in the treated animals were somewhat higher. In the clodronate animals, a slight increase in the area of subperiosteal new bone might have resulted from hampered remodeling of new bone; remodeling of subperiosteal new bone was not measured in the present study. The results indicate, however, that new bone formation can occur subperiosteally, independently of resorption activity, and that the mediator mechanisms involved in new bone formation are not inhibited by clodronate. Although it retards the osteoclastic function, clodronate has no effect on osteoid mineralization (Bauer et al. 1986, Schenk et al. 1986, Nilsson et al. 1990).

As expected, plating did not change the quality of the cortical bone matrix, when measured by chemical parameters (Paavolainen et al. 1978). It must be stressed that the contents of matrix components were measured in relation to the dry weight of bone, not to the volume. The reduced calcium concentration in diaphyseal bone detected both under the plate and in the contralateral unplated tibia during follow-up reflects the high turnover rate of bone, which was counterbalanced by clodronate treatment. Determination of the calcium concentration in bone does not make it possible to evaluate the rate of mineral formation and resorption. Unfortunately, the dynamic analysis of collagen turnover by tritiated proline labeling failed for technical reasons. Information on dynamic collagen formation and mineralization therefore was not obtained.

The kinetics of disodium clodronate in rabbits has been studied after subcutaneous administration of disodium clodronate, 50 mg/kg, once a week. High concentrations in serum were obtained 1 hour after subcutaneous administration. The levels declined rapidly thereafter, giving an estimated half-life of about 1 hour. A remarkable amount of the drug administered
(roughly over 60 percent) was found in bone 2 hours after the subcutaneous injection. The concentration in bone 2 hours after the subcutaneous injection was 509.1 ± 37.7 µg/g (Lauren and Österman 1990). Earlier it has been shown that high radioactivities in bone persist even 12 months after a single intravenous dose of 14C-clodronate (Mönkkönen 1988). The dosage and administration route of the drug were thus clearly adequate to reveal the anticipated effects.

We conclude that the early osteopenia occurring under a rigid plate and concomitant new bone formation may represent the regional acceleratory phenomenon. Clodronate treatment may be beneficial with respect to the osteopenic response occurring under rigid plate fixation. Subperiosteal new bone formation, reflecting the reparative response of bone, was not inhibited. Clodronate treatment thus seems not to be contraindicated in conjunction with rigid osteosynthesis, when it is indicated for other reasons.

Acknowledgements

We thank Dr. H. Hanhijärvi and Leiras, Huhtamäki Oy, Finland, for materials and the drug for this experiment, and S. Kivelä, D.V.M., and M. Kuusio, D.V.M., for the anesthesia and their good care of the rabbits during the experiment.

References

