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CT-based micromotion analysis method can assess 
early implant migration and development of radiolucent 
lines in cemented glenoid components: a clinical feasi-
bility study
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Background and purpose — CT micromotion analysis 
(CTMA) has been considered as an alternative to radio-
stereometry (RSA) for assessing early implant migration 
of orthopedic implants. We investigated the feasibility of 
CTMA to assess early migration and the progression of 
radiolucent lines in shoulder arthroplasties over 24 months 
using sequential low-dose CT scans.

Patients and methods — 7 patients were included and 
underwent 9 primary total shoulder arthroplasties. We made 
CT scans preoperatively, within 1 week postoperatively, and 
after 3, 6, 12, and 24 months. At each follow-up, postopera-
tive glenoid migration and any development of radiolucent 
lines were assessed. Clinical outcomes were recorded at all 
time points except within 1 week postoperatively.

Results — For the glenoid component, the median trans-
lation and median rotation were 0.00–0.10 mm and –1.53° 
to 1.05° at 24 months. Radiolucent lines could be observed 
around all glenoid components. The radiolucent lines devel-
oped from the periphery to the center of the implant for 6 
glenoid components during follow-up. The Constant Score 
improved from a mean of 30 (21–51) preoperatively to 69 
(41–88) at 24 months.

Interpretation — CTMA can be used to identify early 
migration and the development of radiolucent lines over time 
in glenoid components. Clinical trials with a larger sample 
size and longer follow-up are needed to establish the rela-
tionship between migration, radiolucent lines, loosening, 
and clinical outcome.

Early migration is correlated to loosening in hip and knee 
arthroplasty (1,2). However, this correlation is not yet well 
defined in shoulder arthroplasty (3). Early migration has pre-
viously been measured with radiostereometry (RSA) (1,2). 
RSA has excellent accuracy and precision; however, the need 
for expensive RSA laboratories, trained staff, and strict patient 
positioning during the examinations limits its widespread clin-
ical application (4). In addition, the progression of radiolucent 
lines, believed to contribute to aseptic loosening, may not be 
identified on RSA radiographs due to the low radiation dose 
but also due to the unconventional angles of X-ray projections 
in an RSA examination (4). There has lately been an interest 
in using CT-based methods to follow implant migration (5-7). 
A commercially available CT-based method, CT micromotion 
analysis (CTMA), has previously been used to measure early 
migration in an experimental setting in shoulder arthroplasty 
and in a clinical setting in hip arthroplasty with satisfying pre-
cision and accuracy at a low effective dose (6,7). However, 
this method has not yet been used in a clinical setting follow-
ing a cohort of patients with shoulder implants over time. We 
evaluated whether CTMA could be used to discern migration 
and radiolucency development in glenoid components over a 
period of 24 months.

Patient and methods
Patients
9 total shoulder arthroplasties in 7 patients (5 females) with 
shoulder joint osteoarthritis, scheduled for a total shoulder 
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arthroplasty procedure, were consecutively recruited between 
2016 and 2018 for this cohort study at the Department of 
Orthopaedics at St Mary’s Hospital, Imperial NHS Trust 
(Table 1). 

Implant and surgery
All surgical procedures were performed by 1 of 3 orthopedic 
consultants surgeons. A limited deltopectoral approach, with 
division and repair of the subscapularis tendon, was used. The 
Affinis Short Stemmed Total Shoulder Prosthesis (Mathys, 
Bettlach, Switzerland [Affinis Short]) was implanted in all 
patients (Figure 1). The highly cross-linked polyethylene 
(Vitamys) glenoid component of this system had been modi-
fied by the manufacturer to accommodate 8 inserted 0.8 mm 
steel beads. Palacos cement was used to fix the glenoid com-
ponent. The uncemented humeral component consisted of a 
titanium stem coated with calcium phosphate and an alumina 
ceramic head. During the surgery, 3 to 7 tantalum beads of 1 
mm were inserted in the glenoid bone. Patients were immedi-
ately mobilized according to the standard departmental phys-
iotherapy program. 

CT examinations
All patients were assessed with a preoperative standard CT 
scan (CT1). For the postoperative follow-ups, CT scans of the 
shoulder with a limited field of view were performed within 
1 week postoperatively (CT2), and at 3 (CT3), 6 (CT4), 12 
(CT5), and 24 months (CT6) after surgery (Figure 2). The 
patients were supine on the CT table and the arm was placed 
in a neutral position. The CT scans were conducted with a 
CT scanner (Ingenuity, Philips, Eindhoven, The Netherlands) 
with standard shoulder parameters: voltage-120 kVp, pitch-1, 
rotation time 0.4 seconds, and automatically modulated tube 
current. The images were reconstructed into a 768×768 matrix 
with an x–y pixel size of 0.65 mm and a slice thickness of 1 
mm with 0.5 mm increments, without the use of metal artefact 
reduction algorithms.

CT measurements
Preoperative CT scans were used to measure the version, the 
inclination of the glenoid, and the Walch classification score 
(8) to characterize the wear pattern of the glenoid and to con-
firm the suitability of anatomic shoulder replacement (Table 
1). The immediate postoperative CT scan was used to mea-
sure the retroversion and inclination of the glenoid implant 
after surgery. These measurements were performed in 2D by 
a radiologist (MK) adapting the Multiplanar Reformat (MPR) 
view of the Carestream PACS system (Carestream, Rochester, 
NY, USA) to a coordinate system described by Gregory et al. 
creating a scapular plane with the supraspinatus fossa line and 
the lateral border line of the scapula and comparing it with the 
glenoid surface or the glenoid component to measure version 
and inclination of the component (9).
  
Image analysis
The postoperative CT scans were imported into the CTMA 
software for the image analysis. The image analysis has pre-
viously been described in detail by Brodén et al. for hip and 
experimental shoulder implant migration measurements (6,7). 
In our study, the CT scans CT3, CT4, CT5, and CT6 were suc-
cessively compared with the immediate postoperative scans 
CT2 to measure the migration of the glenoid component rela-
tive to the scapular bone in between these scans. To assess 
the migration of the glenoid component relative to the scapu-

Table 1. Patient description and preoperative clinical data. Values 
are count unless otherwise specified

Male / female 2 / 5
Age, mean (SD) 66 (6.8)
Primary osteoarthritis / avascular necrosis 7 / 2
Walch score A1 / A2 / B1 / B2 2 / 4 / 2 / 1
Mean preoperative retroversion (range) 5 (0–12)
Mean preoperative superior inclination (range) 2.9 (–5 to 14)
Preoperative Constant score, mean (SD) 30 (9.5)
Preoperative Oxford score, mean (SD) 24 (7.7)
 
Patients included in the study were between 50 and 80 years of age, 
had arthritis involving the glenoid that required an anatomical total 
shoulder replacement procedure, and had good cognitive function. 
Patients that could not speak English, had a cognitive disability, or 
another surgical procedure such as a reverse or hemiarthroplasty 
were excluded.

Figure 1. The Affinis Short Stemmed Total Shoulder Prosthesis. Image 
reproduced from Brodén et al. 2020 (6)

Figure 2. Postoperative limited field of view on a scanogram for the 
CT scan.
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lar bone between 2 timepoints, the following steps were per-
formed in the CTMA software. (Figure 3):
1. The CT volumes were imported into the CTMA system, 

and an optimization of bone thresholding segmentation was 
performed manually (threshold value = 350–450 Houn-
sfield Units). 

2. The scapular bone (the reference rigid body) was defined in 
2 separate CT examinations.

3. The scapular bone of the 2 separate CT examinations was 
registered to obtain a visual overlap of the bone. 

4. A manual thresholding segmentation of metal was per-
formed manually (threshold value = 2,200 Hounsfield 
Units).

5. The beads of each glenoid component (the target rigid 
body) were defined in 2 separate CT examinations.

6.  The beads of the glenoid components were registered to 
obtain a visual overlap of the implant of the 2 CT examina-
tions. 

This image analysis resulted in a visual output in the form 
of registered 2D and 3D volumes as well as numerical migra-
tion values expressed in 6 degrees of freedom (translation 
along and rotations around x, y, z, in a CT DICOM coordinate 
system). During the analysis, the consistency of the registered 
rigid bodies was verified manually with a color-coded feed-
back mechanism that illustrates any change in the transforma-
tion of either rigid body due to movement of beads or bone 
morphology changes. Green indicated a successful registra-
tion. Only 2 glenoid cases had stable scapular bone bead pat-
terns due to an insufficient number or unsatisfactory distribu-
tion of beads. Since the bead patterns were unstable and could 
potentially compromise our migration results, we performed 
bone registration using solely the surface anatomy of the 
scapular bone. However, the beads of each glenoid compo-
nent had a stable pattern and were therefore used for the 2nd 
registration (5 and 6). Migration of the glenoid component in 
translation was expressed along the transverse axis (x-axis 

medial [+] and lateral [–]), the sagittal (y-axis, posterior [+] 
and anterior [–]), and the longitudinal axis (z-axis, proximal 
[+] and distal [–] ). Migrations of the glenoid component in 
rotation were expressed around the x-axis (forward [+] and 
backward [–] rotation), around the y-axis (superior inclination 
[+]/inferior inclination [–]) and around the z-axis (anteversion 
[+]/retroversion [–]) (Figure 4).

Postoperative radiolucency measurements
Any radiolucent lines were identified around the glenoid com-
ponent, and their width was measured at the middle of the 
implant in the axial and frontal view of the postoperative CT 
scans. The glenoid was divided into 4 zones and the maxi-
mum width of the radiolucent lines was measured in each zone 
(Figure 5). The CTMA software was used to visualize the pro-
gression of radiolucent lines between 2 timepoints.

Postoperative clinical scores
The outcome was evaluated with the Constant Score and the 
Oxford Score preoperatively and at 3 (CT3), 6 (CT4), 12 
(CT5), and 24 months (CT5) postoperatively. The Constant 
Score (CSS) assesses the overall function of the shoulder (10). 
The Oxford Score was used to measure the patient’s reported 
outcomes (11,12). 

Figure 3. CTMA processing schematic for the glenoid component. The green color for each 
registration indicates a successful registration.

Figure 4. Coordinate DICOM system with 
arrow pointing in the positive direction. Image 
reproduced with permission from Sandberg 
et al. Acta Orthop 2020; 91(6): 654-9. doi: 
10.1080/17453674.2020.1832294. .

Figure 5. Description of radiolucency around several zones of the gle-
noid component in the frontal and axial view of a CT scan.
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Effective radiation dose
The effective radiation dose was evaluated with the formula 
conversion factor of the shoulder (k) × dose length product 
(DLP). For the formula k × DLP, we used the conversion 
factor from the IRCP 103 of the neck (0.0052 mSv/mG.cm) 
and the chest (0.0146 mSv/mG.cm) divided by 2 (0.0099 mSv/
mG.cm), to provide an estimation of the conversion factor of 
the shoulder (13). 

Precision of method
The precision values used in this study were obtained from a 
previously performed cadaveric CTMA study by our research 
group on the same implant, the Affinis Short Stemmed Total 
Shoulder Prosthesis (6). If the glenoid component in patients 
shifted more than the precision values, we considered that the 

component had migrated. The precision for the glenoid com-
ponent was in the range of 0.08–0.12 mm for translations and 
0.27–0.36° for rotations. 

Ethics, funding, data sharing, and potential conflicts 
of interests
The study was approved by the NHS Research Ethics Com-
mittees (reference -15/LO/1899). The Wellcome Trust Trans-
lational Grant (Reference No. WT 098269/ Z/12/Z) gave 
financial support. The clinical data from this study will be 
available upon request at: cyrus.broden@gmail.com. PR, MK, 
RP, DG, OSK, and RE did not have any conflict of interests. 
CB and HO received consultancy fees from Sectra Orthopae-
dics. Sectra Orthopaedics was not involved in the study design 
or interpretation of the data.

Table 2. Median migration (range) of the glenoid implant measured with CTMA using scapular anatomy registration

  Months after surgery
Factor 3 6 12 a 24

X-translation (mm) 0.03 (–0.06 to 0.26) 0.01 (–0.13 to 0.51) 0.04 (–0.24 to 0.44) 0.00 (–0.26 to 0.91)
Y-translation (mm) –0.06 (–0.28 to 0.16) –0.03 (–0.25 to 0.62) 0.03 (–0.23 to 1.14) 0.04 (–0.42 to 0.77)
Z-translation (mm) 0.04 (–0.16 to 0.69) 0.10 (–0.06,0.36) 0.04 (–0.27,0.41) 0.10 (–0.04 to 0.34)
X-rotation (°) 0.11 (–0.89 to 3.99) –0.68 (–2.19 to 0.47) –0.60 (–2.77 to 0.06) –1.53 (–2.53 to 0.01)
Y-rotation (°) 0.11 (–1.45 to 0.71) 0.56 (–0.78 to 1.94) 0.77 (–0.83 to 2.66) 1.05 (–0.62 to 3.45)
Z-rotation (°) 0.32 (–0.50 to 3.95) 1.01 (–0.20 to 1.79) 0.26 (–0.59 to 4.52) 0.04 (–0.97 to 4.88)

 a 1 examination at 12 months was excluded. 
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Figure 6. Migration in translation and rotation of the glenoid component over 24 months. 
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Results
Migration of the glenoid component
1 CT exam from 1 participant was excluded from the clini-
cal study due to the use of a different CT protocol (CT slice 
thickness of 2 mm instead of 1 mm). There were no complica-
tions (infection, revision, reoperation) after surgery during the 
24-month follow-up. 

The mean retroversion and the mean superior inclination of 
the glenoid component within 1 week postoperatively were 
2.5° (–5 to 11) and 0.9° (0–7) respectively. 

For the glenoid component migration, the median transla-
tion and the median rotation were 0.00–0.10 mm and –1.53° to 
1.05° at 24 months. The median migration in y-rotation, cor-
responding to superior/inferior inclination, was 0.11° (–1.45 
to 0.71) at 3 months and 1.05° (–0.62 to 3.45) at 24 months 
(Table 2). 5 of 9 glenoid implants showed migration over 2° 
at 24 months, 2 in posterior rotation (x-rotation) and superior 
inclination (y-axis), 2 only in superior inclination (y-axis) and 
1 in anteversion (z-rotation). No specific pattern of glenoid 
migration could be observed (Figure 6). 

shift was defined as migration superior to 5° or more in ver-
sion or inclination. None of the glenoid implants in our study 
migrated more than 5° and they did not follow a specific pat-
tern. Rahme et al. performed an RSA study of the migration of 
a 3-pegged cemented glenoid component, also without finding 
any specific pattern of migration (14). There is currently no 
threshold value of migration in shoulder arthroplasty that is 
correlated to loosening. This might be due to the few studies, 
all with short follow-up (15). 

In our cohort, all the glenoid components had a progres-
sion of radiolucent lines, but we found no correlation between 
migration and radiolucent lines. This is in contrast to the find-
ings of Richetti et al. (5), who identified such a correlation. 
In a study by Bell and Coghlan (16) on the same implant as 
we used, only 16% of cases had radiolucency development 
seen on standard radiographs. However, an explanation of this 
lower rate compared with our results could be that standard 
radiographs tend to underestimate radiolucent lines compared 
with CT scans (17). We used a descriptive approach to char-
acterize the development of radiolucent lines to avoid some 
of the limitations associated with traditional radiolucency 
scores. Traditional scores such as Molé and Lazarus scores 

Table 3. Development of radiolucent lines around the glenoid component

 Postoperatively 24 months
 Periphery Centrally Periphery Centrally
Glenoid Zone 1 Zone 4 Zone 2 Zone 3 Zone 1 Zone 4 Zone 2 Zone 3

1 0 0 0 0 0–1 0–1 0–1 0–1
2 0–1 0–1 0 0 1–2 1 0–1 0
3 0 0 0 0 0 0–1 0 0–1
4 0–1 0–1 0 0 1–2 1–2 0–1 0–1
5 0 0–1 0 0–1 1–2 1–2 0–1 0–1
6 0–1 0–1 0 0 1–2 1–2 0–1 0–1
7 0–1 0–1 0 0 1–2 1–2 0–1 0–1
8 0 0 0 0 0 0–1 0–1 0–1
9 0–1 0–1 0 0 2–3 0–1 0–1 0–1

Width of lines was measured in range of mm (0; 0–1; 1–2; 2–3 mm). For details of 
radiolucent lines at 3, 6, and 12 months see Table 4 in Supplementary data.
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Figure 7. Constant scores for each shoul-
der arthroplasty case. For color codes, see 
Figure 6.

Figure 8. Oxford scores for each shoulder 
arthroplasty case. For color codes, see 
Figure 6.

Radiolucent lines
Radiolucent lines could be observed around all 
the glenoid components. The radiolucent lines 
developed from the periphery to the center of 
the implant for 6 glenoid components during 
the follow-up period of 24 months. At 24 
months, all 9 glenoid components had radio-
lucent lines that had reached and involved the 
2 pegs of the implant (Table 3 and Table 4, see 
Supplementary data).

Clinical scores
All patients improved their clinical scores. No 
correlation could be found between migration 
of the implants and clinical scores (Figures 7 
and 8). 

Effective dose
The mean cumulative effective dose of the 
postoperative CT shoulder scans used for 
CTMA was 7.72 mSv (5.4–11.7) or 1.54 mSv 
per CT scan.  

Discussion

We found that 5 of 9 glenoid implants showed 
migration over 2° at 24 months. In a cohort 
study of 20 shoulder arthroplasties performed 
by Richetti et al., 35% of their anchor peg gle-
noid components showed evidence of shift 
on CT scanning (5). However, in their study, 
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were originally created to detect radiolucent lines in keeled 
glenoid components on a frontal radiograph (18,19). In addi-
tion, some radiolucency scores do not emphasize the devel-
opment of radiolucent lines in each zone around the glenoid 
component (19).

For the CTMA analysis of the glenoid component migra-
tion, we investigated whether the rigid body registration of the 
scapula could be performed using the tantalum beads inserted 
in the scapular bone. In previous RSA shoulder implant stud-
ies by Rahme and Nuttall et al. (14,20), several beads were 
distributed along the glenoid surface but also in the acromion 
to create a stable rigid body in the scapula used for the RSA 
analyses. We did not perform an additional small incision to 
insert beads in the acromion. In addition, the exposure of the 
limited deltopectoral approach made it more difficult to spread 
the beads in the glenoid vault. Therefore, the quality of the 
registration in CTMA of the scapular bone was not satisfac-
tory and the beads could therefore not be used in the analy-
ses. We performed the CTMA glenoid component migration 
analyses relying on the surface anatomy of the scapular bone, 
which is an advantageous feature of CTMA compared with 
RSA that makes it possible to analyze data without being 
dependent on the number of inserted beads and their distribu-
tion in the bone during surgery. In RSA, for example, marker 
occlusion can lead to exclusion of RSA examinations and loss 
of data (21,22). This CTMA feature therefore makes insertion 
of beads in the bone redundant.

The CT effective dose was estimated for postoperative CT 
scans with the conversion factor (k) × DLP to a mean of 7.72 
mSv for each implant or a mean of 1.54 mSv per CT scan. 
This accumulated dose is lower than the effective dose of a 
routine CT chest without contrast, estimated at 8.2 mSv (23). 

A limitation of this study was that the precision of CTMA 
was not estimated in a clinical setting. It has been recom-
mended in the RSA guidelines to perform double examina-
tions for each subject in a study to estimate precision (4). The 
double examinations are important because the precision can 
vary between different studies depending on the study subject 
(4). However, for this study, we used precision values from a 
previously performed cadaveric study using the Affinis Short 
Stemmed Total Shoulder Prosthesis, to prevent additional 
radiation (6).

Another limitation is that there is currently no measurement 
in CTMA equivalent to the condition number or mean error of 
rigid body fitting in RSA (4). A low condition number in RSA 
indicates good marker distribution and a lower mean error of 
rigid body fitting reflects the stability of markers in RSA. These 
measurements guarantee a reliable image analysis and reliable 
migration results (4). In CTMA, marker distribution and sta-
bility of markers is currently manually verified in the visual 
interface and relies on the user’s experience and judgement.

A 3rd limitation is that standard radiographs were not per-
formed at the different postoperative CT timepoints to follow 
the development of radiolucent lines. This would possibly 

have increased the validity of our findings as development of 
radiolucent lines has been more extensively studied and pri-
orly measured in standard radiographs (19,24). However, it 
is also important to note that Yann et al. found that standard 
radiographs underestimate the detection of radiolucent lines 
compared with CT (17). A potential disadvantage of CT used 
for radiolucent line measurements could be that the number 
of slices in a scan and different projections might increase the 
variability of radiolucency measurements between observ-
ers. However, it is important to underline that the progression 
of radiolucent lines over time which can visually be seen in 
CTMA is more important than a measurement or score at 1 
specific timepoint.

Finally, another limitation is the small sample size that pre-
vents statistical analysis to detect an association between the 
development of radiolucent lines and migration.

In conclusion, CTMA can detect shifts in migration and 
development of radiolucent lines. Further clinical trials with 
longer follow-ups with a larger sample size are needed to 
explore the relationship between migration, radiolucent lines, 
and loosening.  
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Table 4. Development of radiolucent lines around the glenoid component

 3 months 6 months 12 months
 Periphery Centrally Periphery Centrally Periphery Centrally
Glenoid Zone 1 Zone 4 Zone 2 Zone 3 Zone 1 Zone 4 Zone 2 Zone 3 Zone 1 Zone 4 Zone 2 Zone 3

1 0 0–1 0 0–1 0–1 0–1 0–1 0–1 0–1 0–1 0–1 0–1
2 0–1 0–1 0 0 0–1 0–1 0 0 1–2 0 0 0
3 0 0–1 0 0–1 0 0–1 0 0–1 0 0–1 0 0–1
4 0–1 0–1 0 0 0–1 0–1 0 0 0–1 0–1 0–1 0–1
5 0–1 1– 2 0 0 0–1 0–1 0 0 0–1 1–2 0 0–1
6 0–1 0–1 0 0–1 1–2 1–2 0–1 0–1 1–2 1–2 0–1 0–1
7 1–2 0–1 0 0 1–2 0–1 0 0–1 1–2 0–1 0–1 0–1
8 0 0–1 0 0 – 1 0–1 0–1 0–1 0–1 0–1 0–1 0 0–1
9 1–2 0–1 0 0 1–2 0–1 0 0 1–2 0–1 0 0

Width of lines was measured in range of mm (0; 0–1; 1–2; 2–3 mm).
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